
CS 240 Laboratory 7
Pointers and Introduction to gdb/valgrind

• Predict results of pointer code
• Write some pointer code
• Analyze incorrect code
• Start to use GNU debugger gdb

- see what is going on “inside” a program while it
executes

- display values of variables and examine contents
of memory

- understand the effect of your programs on the
hardware of the system

• Start to use Valgrind memory error detection
tool to indicate problems with memory
allocation/deallocation and access

Pointers

A pointer is a variable that contains the address of another variable.

Since a pointer contains the address of an item, it is possible to access
the item “indirectly” through the pointer. For example,

 int x;
 int* px;
 px = &x;

means px contains the address of x, or “points” to x.

Similarly,

 int y = *px;

means that y gets the value stored at the address in px (the value px
“points” to).

Pointer Arithmetic

If p is a pointer, then p++ increments p to point to the next element of
whatever kind of object p points to. So, the actual number by which p
gets increments is a multiple of the size in bytes of the object pointed to.

 int *p;
 p++;

results in p being incremented by the size of an integer in bytes on the
particular machine on which the operation is performed.

If the word size is 32 bits, p is incremented by 4.

If the word size is 64 bits, p is incremented by 8.

Multiple Dereferencing and Memory Models

The following declaration allocates space in memory for an array of
pointers (specifically, 3 pointers to chars):

 char* commandA[3];

You can also dereference more than once with the use of multiple
operators (remember that arrays and pointer can be used
interchangeably). For example:

 char** commandPtr = commandA;

If the following statements were executed to initialize some strings
(arrays of characters):

 commandA[0] = "emacs";
 commandA[1] = "strings.c";
 commandA[2] = NULL;

You could use the following diagram to model the data (the directed
arrows indicate a pointer, or address):

Another way to understand how memory is organized here is to use our
model of memory from lecture:

Evaluate C Pointer Expressions
For each row, evaluate the expression in the first column, and make a prediction for the type and
the numeric value of the expression in the second and third column:

• for pointer types, write the numeric address (what you would get from printf("%p", ...))
• assume a machine with 32-bit addresses and integers and little endian storage
• char* p = (char*) 0x1100;
• char* q = (char*) 0x1110;

 Type Numeric value
0. p char * 0x1100
1. &p[1]
2. &p[-1]
3. &p[0]
4. &p[1] - &p[0]
5. &p[8]
6. (p + 1) - p
7. &p[16] - p
8. q - p
9. sizeof(p)
10. sizeof(*p)
int* ip = (int*) p; //assume this statement is executed before
 evaluating the next statements

11. &ip[0]
12. &ip[1]
13. &ip[1] - &ip[0]
14. (char*) &ip[1] - p
15. sizeof(ip)
16. sizeof(*ip)
17. &ip[sizeof(int)]
18. ip + sizeof(int)
19. ip + 1
20. p + sizeof(int)
int* iq = (int*) q; //assume this statement is executed before
 evaluating the next statements

21. iq - ip
22. &iq[-1] - ip
p[0] = p[1] = p[2] = p[3] = 0; //assume this statement is
 executed before evaluating the next statement

23. *ip
(char) ip = 1; //assume this statement is executed before
 evaluating the next statement

24. *ip

((char) ip + 1) = 1;//assume this statement is executed before
 evaluating the next statements

25. p[1]
26. *ip
((char) ip) = 2; //assume this statement is executed before
 evaluating the next statements

27. *((char*) ip)
28. *ip

GNU Debugger (gdb)

Tutorials and manuals:

 http://wellesleycs240.bitbucket.org/tools.html

 Commands
Can be shortened to a single letter, or repeated by entering <return> at
the prompt):

• Compile C program with –g option to create debugging information
• Run the program under gdb

 $ gdb testprog

 (gdb) run

• Set breakpoints

 (gdb) break main

• Step/next statement by statement through your program

 (gdb) step
 (gdb) next

 (gdb) cont -- continue execution

• Display/print code or values of variables and arguments

 (gdb) list
 (gdb) print x
 (gdb) info locals
 (gdb) info args

• (gdb) quit or Ctrl-d -- to exit.

• To find a bug:

1. Set breakpoints at the start of every function
2. Restart the program and step line-by-line until you locate the

problem exactly.
3. If program is stuck (infinite loop) Ctrl-c terminates the action

of any gdb command that is in progress and returns to the gdb
prompt.

• Execute statements/expressions during execution to tweak program
execution state

 (gdb) set var i = 2

• Display/print binary and hexadecimal representation of variables
and arguments

 (gdb) print /x result -- uses hex representation
 (gdb) print /t result -- uses binary representation

