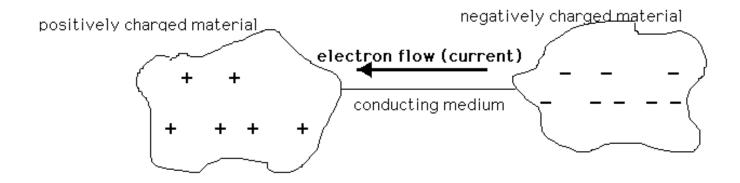
Introductory Concepts and Tools Computer Science 240

Laboratory 1

- Administrivia
- Lab Environment
- Basic Electronics (Ohm's law, transistors, logic gates)

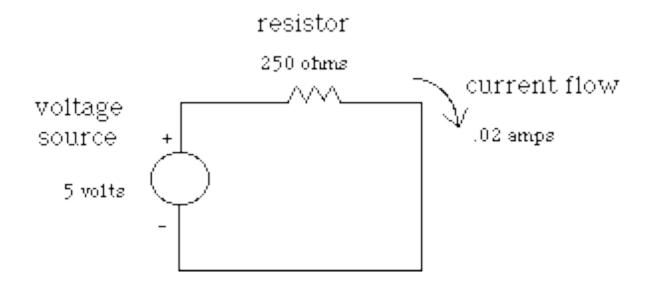
Lab Environment

- All lab exercises and reports will be Google Docs, and should be shared with lab partner and the instructor
- Bring a laptop to lab if you have it (helpful to use a second computer for the lab report)
- From lab machine booted to Linux, you can enter Linux commands using a terminal/shell
- You can also use a terminal from either Mac (*Terminal*) or PC (*PuTTY*) to open a remote connection to a Linux machine for command-line entry

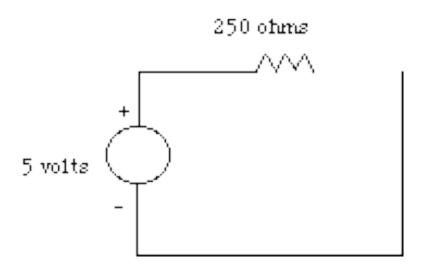

NOTE: for some exercises and assignments, you will be required to use the lab machines to compile and run your programs

Basic Concepts of Electricity

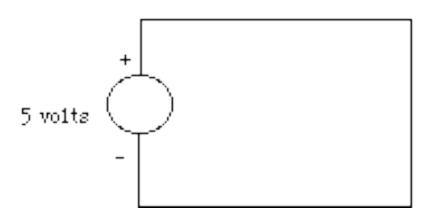
Electricity = **the movement of electrons** in a material


Materials tend to have a net negative or positive charge

Difference of charge between two points = **potential difference** (V)

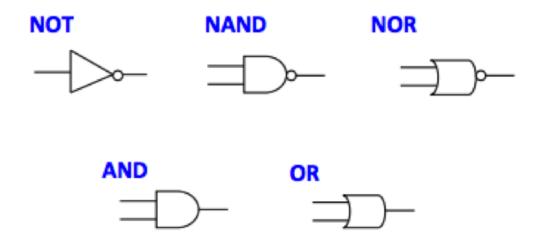

Rate at which electrons flow through = current(A).

Ease of conduction, or current flow = resistance (Ω)



Ohm's Law, V = IR.

Open circuit = no current

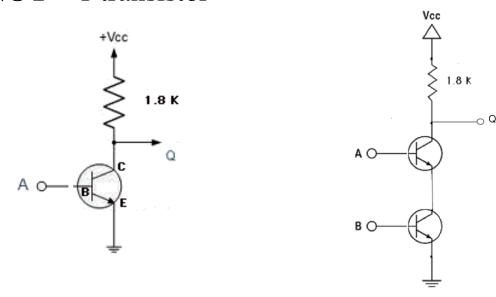


Short circuit = infinite current, since V/0 = infinite current:

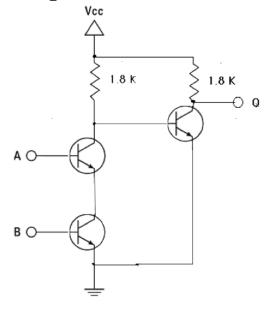
Infinite current swiftly results in the destruction of the circuit!

Basic Gate Symbols

Notation and Truth Tables for Basic Logic Gates

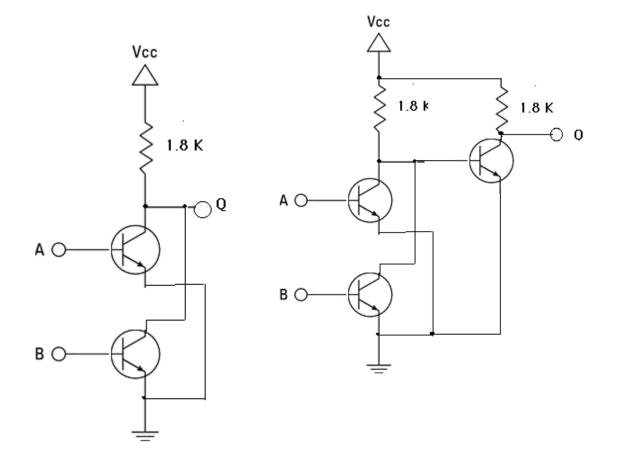

$ NO \\ F = A $		NAND F = (AB)'	$NOR \\ F = (A+B)'$	$\begin{array}{c} \mathbf{AND} \\ \mathbf{F} = \mathbf{AB} \end{array}$	$ OR \\ F = A + B $
\mathbf{A}	F	AB F	AB F	AB F	AB F
0	1	$\overline{0 \ 0 \ 1}$	$\overline{0 \ 0 \ 1}$	$\overline{0 \ 0 \ 0}$	$\overline{0 \ 0 \ 0}$
1	0	0 1 1	0 1 0	0 1 0	0 1 1
		1 0 1	1 0 0	1 0 0	1 0 1
		1 1 0	1 1 0	1 1 1	1 1 1

Basic Gates are built using Transistors


You have seen the circuits for NOT and NAND in lecture:

NOT – 1 transistor

NAND - 2 transistors


AND – uses 3 transistors (send the output of a NAND through another transistor acting as a NOT gate to complement the result):

Similarly, these are the transistor circuits for a NOR and OR gate:

NOR – 2 transistors

OR – 3 transistors

