CS240 Laboratory 2 Digital Logic

- Circuit equivalence
- Boolean Algebra/Universal gates
- Exclusive OR
- Linux, C, Emacs
- Bit Puzzles
- Bitbucket, Mercurial

Circuit Equivalence

Two boolean functions with same truth table = **equivalent**

When there is an equivalent circuit that uses fewer gates, transistors, or chips, it is preferable to use that circuit in the design

Example:

Given:
$$F = A'B' + A'B$$
 $Q = A' + A'B + A'B'$

A	В	A'B'	A'B	F	A	В	A'	A'B	A' B'	Q
0	0	1	0	1	0	0	1	0	1	1
0	1	0	1	1	0	1	1	0	0	1
1	0	0	0	0	1	0	0	0	0	0
1	1	0	0	0	1	1	0	0	0	0

F and Q are equivalent because they have the same truth table.

Identities of Boolean Algebra

- Identity law
$$1A = A \quad 0 + A = A$$

- Null law
$$0A = 0 1 + A = 1$$

- Idempotent law
$$AA = A A + A = A$$

- Inverse law
$$AA' = 0$$
 $A + A' = 1$

- Commutative law
$$AB = BA$$
 $A + B = B + A$

- Associative law
$$(AB)C = A(BC)$$

 $(A + B) + C = A + (B + C)$

- Distributive law
$$A + BC = (A + B)(A + C)$$

 $A(B + C) = AB + AC$

- Absorption law
$$A(A + B) = A$$

 $A + AB = A$

- De Morgan's law
$$(AB)' = A' + B'$$

 $(A + B)' = A'B'$

Example:

$$F = A'B' + A'B$$
 $Q = A' + A'B + A'B'$
 $= A'(B' + B)$ distributive $= A' + A'B'$ absorption
 $= A'(1)$ inverse $= A'$ absorption
 $= A'$ identity

Universal Gates

Any Boolean function can be constructed with NOT, AND, and OR gates

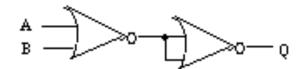
NAND and NOR = universal gates

DeMorgan's Law shows how to make AND from NOR (and vice-versa)

$$AB = (A' + B')'$$
 (AND from NOR)
 $A + B = (A'B')'$ (OR from NAND)

NOT from a NOR

OR from a NOR



To implement a function using only NOR gates:

- apply DeMorgan's Law to each AND in the expression until all ANDs are converted to NORs
- use a NOR gate for any NOT gates, as well.
- remove any redundant gates (NOT NOT, may remove both)

Implementing the circuit using only NAND gates is similar.

Example:
$$Q = (AB)'B'$$

 $= (A' + B')B'$
 $= ((A'+B')' + B)'$ NOTE: you can use a NOR gate to produce A' and you can do the same for B'

Simplifying Circuits or Proving Equivalency

General rule to simplify circuits or prove equivalency:

- 1. Distribute if possible, and if you can't, apply DeMorgan's Law so that you can.
- 2. Apply other identities to remove terms, and repeat step 1.

EXAMPLE: Is (A'B)'(AB)' + A'B' equivalent to (AB)'?

$$F = (A'B)'(AB)' + A'B'$$

$$= (A + B') (A' + B') + A'B'$$

$$= AA' + AB' + A'B + B'B' + A'B'$$

$$= 0 + AB' + A'B + B' + A'B'$$

$$= AB' + A'B + A'B'$$

$$= AB' + A'B + A'B'$$

$$= B' (A + A') + A'B$$

$$= B'(1) + A'B$$

$$= B' + A'B$$

$$= B' + (A + B')'$$

$$= (B(A + B'))'$$

$$= (AB + BB')'$$

$$= (AB)'$$

$$- can't distribute$$

$$- can't distributive$$

$$inverse and idempotent identity$$

$$distributive$$

$$inverse$$

$$identity$$

$$DeMorgan's$$

$$distributive$$

$$inverse$$

$$idistributive$$

$$inverse$$

$$identity$$

Exclusive OR (XOR)

$$F = AB' + A'B = A \oplus B$$

A B F

0 0 0

0 1 1

1 0 1

1 1 0

Available on IC as a gate, useful for comparison problems

Example: Even parity $F = A \oplus B \oplus C$

ABCF

- 0 0 0 0
- 0 0 1 1
- 0 1 0 1
- 0 1 1 0
- 1 0 0 1
- 1 0 1 0
- 1 1 0 0
- 1 1 1 1