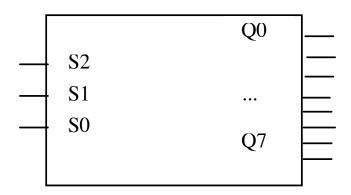

CS 240 Lab 4 Basic Digital Circuits

- Multiplexer
- Decoder
- Adder
- ALU

Multiplexer

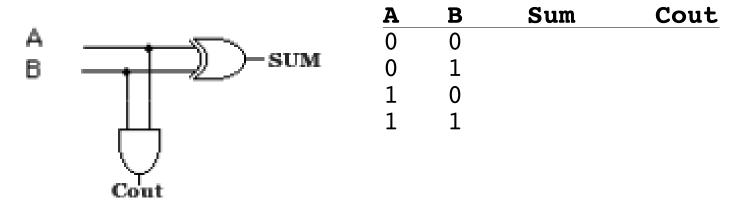
- n select lines
- ⁻2ⁿ input lines
- 1 output

One of the possible 2ⁿ inputs is chosen by the n select lines, and gated through to the output of a multiplexer.

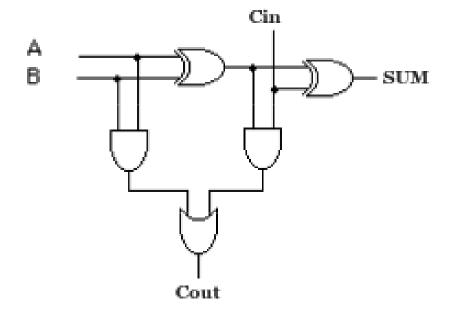


<u>S2</u>	S1	S0	Q
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Multiplexers are usually used for **selection**, but can also act as code detectors.


Decoder

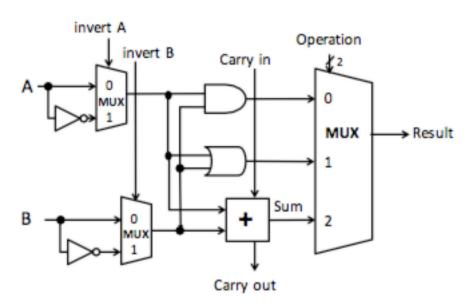
- n input/select lines
 2ⁿ outputs
 only one of the outputs is active at any given time, based on the value of the n select lines.



<u>S2</u>	S1	S0		Q0	Q1	Q2	Q.	3 Q	4 Q	5 Q	6 Q7
0	0	0		1	0	0	0	0	0	0	0
0	0	1		0	1	0	0	0	0	0	0
0	1	0		0	0	1	0	0	0	0	0
0	1	1		0	0	0	1	0	0	0	0
1	0	0		0	0	0	0	1	0	0	0
1	0	1		0	0	0	0	0	1	0	0
1	1	0		0	0	0	0	0	0	1	0
1	1	1		0	0	0	0	0	0	0	1

Half-Adder - adds two one-bit values

Full Adder - incorporates a carry-in


A	В	Cin	Sum	Cout	
0	0	0	0	0	Sum = A⊕B⊕Cin
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	Cout = AB+(A⊕B)Cin
1	0	1	0	1	,
1	1	0	0	1	
1	1	1	1	1	

n-bit adder = n 1-bit adders

Carry-out of each adder = Carry-in of the adder for next two most significant bits being added

ALU

Want to be able to select whether the ALU will produce the bitwise AND, OR, and sum as a result.

The basic operations and results are:

Adding the ability to choose whether to invert A or B provides additional operations:

sub (invert b,
$$Cin = 1$$
, $a + b + Cin$)

NOR (invert a, invert b, a AND b)

inv	A invB	Cin	Op1	Op0	Result
0	0	X	0	$\overline{0}$	a AND b
0	0	X	0	1	a OR b
0	0	0/1	1	0	a + b
0	1	1	1	0	a - b
1	1	X	0	0	a NOR b