
CS240
Lab 7 Assignment

Introduction to the GDB Debugger

Inspect and run a small C program on a Linux machine. NOTE: Do not run your C programs directly on
your own Mac unless you are using wx (virtual machine) or if you are logged in remotely using ssh.

Create the following file prime.c with emacs:

 /* CS 240 program to check if a number is prime */
#include <stdio.h>

int test_prime(int num) {

 int i;

 int prime=1; //assume prime initially

 for (i=2; i<=num/2; ++i) {

 if (num%i == 0) {

 prime = 0; // set to not prime

 break;

 }

 }

 if (prime) {

 printf("%d is prime\n", num);

 } else {

 printf("%d is not prime\n", num);

 }

 return 0;

}

int main() {

 int test1 = 5;

 int test2 = 12;

 test_prime(test1);

 test_prime(test2);

 return 0;

}

2. In order to run programs under gdb, they should be compiled with debugging symbols turned on (-g
option). Usually we provide a Makefile with recipes to compile, but it’s useful to learn some common
compiler options directly. To compile an executable called prime from the C code in prime.c, with all
warnings and debugging symbols enabled, using the 1999 C language standard and 64-bit code, run:

 $ gcc -Wall --std=c99 -m64 -g -o prime prime.c
3. Run the program:

 $./prime

 and you should see the following output:

 5 is prime

 12 is not prime
4. Now, run the program under gdb:

$ gdb prime

GNU gdb (GDB) Red Hat Enterprise Linux (7.2-90.el6)

Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/cs240/test/prime...done.

You can enter gdb commands commands at the prompt to perform various actions. Observe and verify
the output as indicated:

(gdb) run
 Starting program: /home/yourname/gdb-example
 5 is prime
 12 is not prime

 Program exited with code 021.
 (gdb) quit

So, run is used to execute the program, and quit is used to exit gdb.

5. The gdb debugger also allows you to walk through the program while it is running so that you can trace
its steps carefully. Start another gdb session:

$ gdb prime
The break command sets a breakpoint (an address/instruction in the program where gdb should pause
execution). Breakpoints can be set at the beginning of a function or at specific lines in program file. There
are many things that can be done with breakpoints, such as making them conditional or temporary.

6. Set a breakpoint so the program pauses at the beginning of the main function:

(gdb) break main
 Breakpoint 1 at 0x400554: file prime.c, line 24.
7. Run the program, and observe that it pauses execution at the breakpoint:

(gdb) run
 Starting program: /home/jherbst/prime
 Breakpoint 1, main () at prime.c:24
 24 int test1 = 5;

The highlighted line above is the next statement to be executed when the program is resumed (the first
statement in the main() function).
8. The print command displays the value of variables or expressions within the scope of the current
frame. So, since test1 is declared in main, you can print its value at this point:

(gdb) print test1
 $1 = some value
The $1 represents the variable. The current value is not meaningful because the statement initializing the
value to 5 has not yet been executed.

9. Execute a single statement by doing a step:

 (gdb) step

 25 int test2 = 12;
10. Now display test1 again:

 (gdb) print test1
 $2 = 5

11. Try displaying a variable outside the current frame/scope (num is a local variable inside the function
test_prime(), so it is not understood the function:

 (gdb) print num
 No symbol "num" in current context.
12. Execute another statement:
 (gdb) step
 26 test_prime(test1);

The step and next commands are both used to make gdb move forward in the program. For statements
that do not involve functions, the two commands are identical and merely make gdb execute one
statement. For statements that involve a function, however, the two commands are different: next tells
gdb to execute the entire function, while step tells gdb to move inside the function.

13. Entering next at this point should execute the entire function test_prime(test1):

(gdb) next
 5 is prime
 27 test_prime(test2);
14. Start to step through the second invocation of test_prime():
 (gdb) step

 test_prime (num=12) at prime.c:6
 6 int prime=1; //assume prime initially

15. Now that you are within the test_prime() function, you can also change the current context with the
up or down commands (this doesn’t change the point at which you are executing the program, but
instead allows you to display values defined within a different context or frame):

 (gdb) up
#1 0x0000000000400576 in main () at prime.c:27
27 test_prime(test2);

16. Use the info command to display information about the current frame:
(gdb) info locals

 test1 = 5
 test2 = 12

17. Go back down to the test_prime() frame, and display info about the args (arguments) in the current
frame:
 (gdb) down

 #0 test_prime (num=12) at gdb-example.c:6
 6 int prime=1; //assume prime initially

 (gdb) info args

 num=12

18. Another convenience provided by gdb is to list a small segment of the code around where the
program is currently stopped so you can see which statements have been executed and which ones are
about to be:

(gdb) list
1 /* CS 240 program to check if a number is prime */
2 #include <stdio.h>
3
4 int test_prime(int num) {
5 int i;
6 int prime=1; //assume prime initially
7
8 for (i=2; i<=num/2;++i) {

9 if (num%i == 0) {
10 prime = 0; // set to not prime

19. To finish the program, enter cont to continue execution to the end, and then quit to exit gdb:

(gdb) cont
Continuing.

 12 is not prime
 Program exited with code 021.

(gdb) quit
NOTE: most of the commands in gdb can be shortened to a single letter (as long as the shortened
version can uniquely select the desired command).

