
CS240 Laboratory 8
Disassembly and Reverse Engineering

Text Segment
Program instructions can be stored starting at 0x400000 in memory
Grows up into higher addresses in memory with longer programs.

Stack Segment
Top of stack is initially 0x7ffffffffff (247 – 1).
Grows down into lower addresses in memory as stack fills.

When examining X86 code, addresses or numbers used as displacements or
pointers/addresses will have values in the range of the text or stack segments.

Instructions

Moving Data

 movl Src,Dest

Load Effective Address - compute address or arithmetic expression of the
form x + k*I (does not set the condition flags!)

leal Src,Dest

Arithmetic/Logical operations – 2 operands

addl Src,Dest
subl Src,Dest
imull Src,Dest
shrl Src,Dest
sarl Src, Dest
shll Src,Dest
sall Src, Dest
shrl Src,Dest

xorl Src,Dest
andl Src,Dest
orl Src,Dest

mull Src,Dest
imull Src,Dest
divl Src,Dest
idivl Src,Dest

Arithmetic/Logical operations – 1 operand

incl Dest
decl Dest
negl Dest
notl Dest

Zero Extend from Byte to Quad Word

 movzbq Src,Dest

 Setting Condition Codes Explicitly – used for control flow

cmpl/cmpq Src2,Src1 sets flags based on value of Src2 – Src1,
 discards result

 testl/testq Src2,Src1 sets flags based on a & b, discards result

Operand Types

Immediate

 $0x400, $-533

 Register: 16 general purpose

%rax,%rbx,%rcx,%rdx,%rsi,%rdi,%rbp,%rsp,
%r8,%r9,%r10,%r11,$r12,%r13,%r14,%r15

Memory:
 (%rsp)

Control Flow
 Conditional jump instructions in X86 implement the following high-level
constructs:
• if (condition) then {...} else {…}
• while (condition) {…}
• do {…} while (condition)
• for (initialization; condition; iterative) {...}

 Unconditional jumps are used for high-level constructs such as:

• break
• continue

 PC-relative Addressing

Jump instructions encode the offset from next instruction to destination
PC, instead of the absolute address of the destination (makes it easier to
relocate the code)

• X86 instructions can be in different order from C code
• Some C expressions require multiple X86 instructions
• Some X86 instructions can cover multiple C expressions
• Compiler optimization can do some surprising things!
• Local or temporary variables can be stored in registers or on the stack

Function Calling Conventions
• Arguments for functions are stored in registers, in the following

order: arg1 – arg6: %rdi,%rsi,%rdx,%rcx,%r8,%r9
• Return value from function always in %rax

Tools
Tools can be used to examine bytes of object code (executable program) and
reconstruct (reverse engineer) the assembly source.

gdb – disassembles an executable file into the associated assembly language
representation, and provides tools for memory and register examination, single
step execution, breakpoints, etc.

objdump
 can also be used to disassemble and display information

 $ objdump –t p

Prints out the program’s symbol table. The symbol table includes the
names of all functions and global variables, the names of all the functions
the called, and their addresses.

 $ objdump -d p

Object Code
0x401040 <sum>:
0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
0xec
0x5d
0xc3

Disassembled version
00401040 <_sum>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 8b 45 0c mov 0xc(%ebp),%eax
 6: 03 45 08 add 0x8(%ebp),%eax
 9: 89 ec mov %ebp,%esp
 b: 5d pop %ebp
 c: c3 ret

strings
$ strings –t x p
Displays the printable strings in your program.

