
-- 1 --

Basic Electronics and Digital Logic
Computer Science 240

Laboratory 1

• Administrivia

• Lab Environment

• Basic Electronics (Ohm’s law, transistors, logic gates)

• Truth Tables, Sum-of-Products

• Boolean Identities

• Universal Gates

• Integrated circuits

• Protoboard

• LogicWorks

-- 2 --

Lab Environment

• All lab exercises and reports will be Google Docs,
and should be shared with lab partner and the
instructor

• Bring a laptop to lab if you have it (helpful to use a
second computer for the lab report)

• From lab machine booted to Linux, you can enter
Linux commands using a terminal/shell

• You can also use a terminal from either
Mac (Terminal) or PC (PuTTY) to open a remote
connection to a Linux machine for command-line
entry

NOTE: for some exercises and assignments, you will
be required to use the lab machines to compile and
run your programs

-- 3 --

Basic Concepts of Electricity

Electricity = the movement of electrons in a material

Materials tend to have a net negative or positive charge

Difference of charge between two points = potential
difference (V)

Rate at which electrons flow through = current (A).

Ease of conduction, or current flow = resistance (Ω)

-- 4 --

Ohm's Law, V = IR.

Open circuit = no current

-- 5 --

Short circuit = infinite current, since V/0 = infinite current:

Infinite current swiftly results in the destruction of the
circuit!

-- 6 --

Notation and Truth Tables for Basic Logic Gates

NOT NAND NOR AND OR
F = A’ F = (AB)’ F = (A+B)’ F = AB F = A + B

A F A B F A B F A B F A B F
0 1 0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 1 0 0 1 0 0 1 1
 1 0 1 1 0 0 1 0 0 1 0 1
 1 1 0 1 1 0 1 1 1 1 1 1

-- 7 --

Basic Gates are built using Transistors

You have seen the circuits for NOT and NAND in lecture:
NOT – 1 transistor

NAND - 2 transistors

AND – uses 3 transistors (send the output of a NAND
through another transistor acting as a NOT gate to
complement the result):

-- 8 --

Similarly, these are the transistor circuits for a NOR and OR
gate:

NOR – 2
transistors

OR – 3 transistors

-- 9 --

Truth Tables and Sum-of-Products

Truth tables specify the output for all the given input combinations of a
function.

An input combination can be expressed by ANDing together the inputs
(each input or its’ complement is used in the expression, depending upon
which combination is being expressed)

A function can then be expressed as a sum-of-products by ORing
together the input combinations which make the function true.

A B A’B’ A’B A’B’ + A’B A B A’ A’B A’ B’ A’+A’B+A’B’
0 0 1 0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 1 0 0 1
1 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0

 F = A'B' + A'B Q = A’ + A’B + A’B’

F and Q are equivalent (produce the same function) when they have the
same truth table.

When there is an equivalent circuit that uses fewer gates, transistors, or
chips, it is preferable to use that circuit in the design

-- 10 --

Identities of Boolean Algebra

Equivalency can also be proved using the identities of Boolean algebra

- Identity law 1A = A 0 + A = A

- Null law 0A = 0 1 + A = 1

- Idempotent law AA = A A + A = A

- Inverse law AA' = 0 A + A' = 1

- Commutative law AB = BA A + B = B + A

- Associative law (AB)C = A(BC)

 (A + B) + C = A +(B + C)

- Distributive law A + BC =(A + B)(A + C)
 A(B + C) = AB + AC

- Absorption law A(A + B) = A
 A + AB = A

- De Morgan's law (AB)' = A' + B'
 (A + B)' = A'B’

Example:
 F = A’B’ + A’B Q = A' + A'B + A'B'
 = A’(B’ + B) distributive = A’ + A’B’ absorption
 = A’(1) inverse = A’ absorption
 = A’ identity

-- 11 --

Universal Gates

Any	Boolean	function	can	be	constructed	with	only	NOT,	AND,	and	OR	
gates	

But also with either only NAND or only NOR gates = universal gates

DeMorgan’s Law shows how to make AND from NOR (and vice-versa)

AB = (A' + B')' (AND from NOR)
A + B = (A'B')' (OR from NAND)

NOT from a NOR

OR from a NOR

-- 12 --

To implement a function using only NOR gates:

- apply DeMorgan's Law to each AND in the expression until all
ANDs are converted to NORs

- use a NOR gate for any NOT gates, as well.
- remove any redundant gates (NOT NOT, may remove both)

Implementing the circuit using only NAND gates is similar.

-- 13 --

Integrated Circuits (Chips)

Protoboard demo

LogicWorks demo

