
CS 240 Lab 2
Binary Operations

• Binary and Hexadecimal Numbers

• Review of Two’s Complement and Overflow

• Logic Diagrams

• Bit Puzzles

Binary and Hexadecimal Numbers

Hex Binary .
 QD QC QB QA
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
C 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1

Binary can be converted to decimal using positional
representation of powers of 2:

 01112 = 0 x 23 + 1 x 22 + 1 x 21 + 1 x 20 , result = 710

Decimal can be also be converted to binary by finding the largest
power of 2 which fits, subtract, and repeat with the remainders
until remainder is 0 (assigning 1 to the positions where a power
of 2 is used):

 610 = 6 - 22 = 2 - 21 = 0, result = 01102

Hex can be converted to binary and vice versa by grouping into 4
bits.

111101012 = F516 3716 = 001101112

Two’s Complement and Overflow

Given n bits, the range of binary values which can be represented using

 Unsigned representation: 0 –> 2 n – 1

 Signed representation: – 2n-1 -> 2 n-1 – 1, MSB is used for sign

Two’s Complement (signed representation):

 Most significant /leftmost bit (0/positive, 1/negative)

 Example: given a fixed number of 4 bits:
 10002 is negative.
 01112 is positive.

Overflow
Given a fixed number of n available bits:
 Overflow occurs if a value cannot fit in n bits.

 Example: given 4 bits:
 The largest negative value we can represent is -810 (10002)
 The largest positive value we can represent is +710 (01112)

Overflow in Addition

When adding two numbers with the same sign which each can be
represented with n bits, the result may cause an overflow (not fit in n
bits).

An overflow occurs when adding if:

 - Two positive numbers added together yield a negative result, or
 - Two negative numbers added together yield a positive result, or
 - The Cin and Cout bits to the most significant pair of bits being
 added are not the same.

An overflow cannot result if a positive and negative number are added.

 Example: given 4 bits:
 01112
 + 00012
 10002 overflow NOTE: there is not a carry-out!

In two’s complement representation, a carry-out does not indicate an
overflow, as it does in unsigned representation.

 Example: given 4 bits,
 10012 (-710)
 + 11112 (-110)
 1 10002 (-810) no overflow, even though there is a carry-out

Exclusive Or
Useful for comparisons

A parity bit is an extra bit of information which is sent when data is
transmitted, to check for errors in transmission. For a given set of bits,
the number of bits whose value is 1 is counted. The parity bit is an
extra bit which is also sent with the original data. The party bit is set to
0 or 1 to make the total number of 1 bits even.

 A B C Peven
 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 1 0 0
 1 1 1 1

Logic Diagrams

Not the same as pin-outs! Show information
about the logical operation of the device.

Inputs on left side of diagram
Outputs on right
Voltage shown on top
Ground shown on bottom

Bit Puzzles

Example:

/* isPower2 returns 1 is x is a power of 2, and 0 otherwise
 isPower2(5) = 0, isPower2(8) = 1, isPower2(0) = 0

 No negative value is a power of 2

 Legal operations: ! ~ & ^ | + << >>

 Max operations: 20

 Rating: 4
*/

int isPower2(int x) {
 return 2
}

You must write C code to return the correct value for a given input

Constants ,must not be larger than 0xFF (decimal 256)

You may not use conditionals or loops

Tips

Although integers are 32-bit values in this program, assume a smaller
number of bits in your handwritten examples to make your binary
numbers easier to work with

Handwrite some specific binary values and manipulate them with
boolean operators.

Here are some simple manipulations and tips which may help you find
a solution:

o Complement the number
o
o Add and/or subtract 1
o
o Mask (bitwise AND with a mask value to isolate bits)
o
o Shift left and then right again (or vice versa)
o
o Use Exclusive OR to compare values
o
o Bitwise OR a general solution with a special case (such as 0)
o
o !(0) = 1, but !(any other number) = 0

