Wellesley CS 240

Integer Representation

Representation of integers: unsigned and signed
Modular arithmetic and overflow

Sigh extension

Shifting and arithmetic

Multiplication

Casting

Fixed-width integer encodings

Unsigned C N non-negative integers only

Signed C Z both negative and non-negative integers

n bits offer only 2" distinct values.

Terminology:

“Most-significant” bit(s) “Least-significant” bit(s)
or “high-order” bit(s) \ /or “low-order” bit(s)
MSB 0110010110101001 LSB

(4-bit) unsigned integer representation

1 O 1 1 =1x23+0x22+1x2+1x2°
1 <> weight

0 «— Position

n-bit unsigned integers:

minimum =

maximum =

modular arithmetic, overflow

15 0

11 1011 1111 0000 13 1101
13 1110 0001 2 + 5 + 0101
+2 +0010 0010
12 4-bit 0011 | °
unsigned
1111011 integers 0100 | 4
1010 0101
10 \ 1001 0110 5
1000 0111
8 7
x+vy in n-bit unsigned arithmetic is in math
unsigned overflow =

Unsigned addition overflows if and only if

sign-magnitude 1

Most-significant bit (MSB) is sign bit
0 means non-negative 1 means negative

Remaining bits are an unsigned magnitude

8-bit sign-magnitude: Anything weird here?
00000000 represents
Arithmetic?

01111111 represents ____ Example:
4-31=4+(-3)

10000101 represents l
00000100

10000000 represents +10000011

(4-bit) two's complement
sighed integer representation

1 0 1 —1x-23+40x22+1x21+1x20
-23 22 21 20

4-bit two's complement integers:

minimum =

maximum =

two’s complement vs. unsigned

n-1 o n2 D2 21
-2n-1 2n-2 22 21

20

What's the difference?

n-bit minimum =

unsigned

— |_—places

———— two's complement

places

n-bit maximum =

8-bit representations

00001001 10000001

11111111 00100111

n-bit two's complement numbers:

minimum = maximum =

4-bit unsigned vs. 4-bit two’s complement

1 01 1
I1x23+0x22+1x2+1x20 1x-224+0x22+1x21+1x20
pad
11 « - difference = =2 -->-5
15 0 -1 0
1111 0000 -2 1111 0000 + 1
13 1110 0001 2 -3 1110 0001 \ 42

1101 0010

1101 0010

12 [1100 pbit 0011 | 3 ~ 41100 :\;,:I'i o011 "3
1111011 unsigned 0100 | 4 _5\1011 \ complement L4

1010
1001
1000

1010
1001
1000

0101
0110
0111

0111

two’s complement addition

2 0010 -2 1110
+3 +0011 +-3 +1101

Modular Arithmetic

two’s complement overflow

Addition overflows
if and only if
if and only if

-1 1111
+ 2 + 0010

0110
+ 0011

W O

Modular Arithmetic

Some CPUs/languages raise exceptions on overflow.
C and Java cruise along silently... Feature? Oops?

Reliability

Ariane 5 Rocket, 1996 |

Exploded due to cast of -
64-bit floating-point number |
to 16-bit signed number.
Overflow.

"...a Model 787 airplane ... can lose all

BOEing 787, 2015 alternating current (AC) electrical power ...

caused by a software counter internal to the
GCUs that will overflow after 248 days of
continuous power. We are issuing this AD to
prevent loss of all AC electrical power, which
could result in loss of control of the airplane.”
--FAA, April 2015

A few reasons two’s complement is awesome

Addition, subtraction, hardware
Sign
Negative one

Complement rules

Another derivation

How should we represent 8-bit negatives?

* For all positive integers x,
we want the representations of x and —x to sum to zero.

* We want to use the standard addition algorithm.

00000001 00000010 00000011
+ +

00000000 00000000 00000000

|

* Find arule to represent —x where that works...

Convert/cast signed number to larger type.

00000010 8-bit 2

00000010 16-bit 2

11111100 8-bit -4

11111100 16-bit -4

Rule/name?

unsigned shifting and arithmetic

unsigned

x =27; 00011011

y=X<<2; / / // / logical shift left

y == 108 01101100

unsigned

11101101 x =237

NNy

00111011 y ==59

20

two's complement shifting and arithmetic

o 10011011
y=x<<2; M M logical shift left
y ==108 01101100
sighed
11101101 X=-19;

e N

11111011 y==-5

2;

21

shift-and-add

Available operations
x << k implements x * 2k

X +y

Implement y = x * 24 usingonly <<, +, and integer literals

22

What does this function compute?

unsigned puzzle (unsigned X, unsigned V)
unsigned result = 0;
for (unsigned 1 = 0; 1 < 32; 1++){
if (v & (1 << 1)) |

result = result + (x << 1) ;

}

return result;

{

23

multiplication

2
X3

o)

0010
x 0011

00000100

1110
x 0010

11111100

1111
1110
1101

1100

1010
1001

Modular Arithmetic

multiplication

0101
x 0100

5

x4

200 00010100
A

-3 1101
X/ x 0111

21 11101011

1111
1110
1101

1100

1010
1001

Modular Arithmetic

multiplication

5 0101 —1 0

x5 x0101 7 un ~
25 00011001 , /uo .
_7 1100
_c\1011 L 4
-2 1110 _\" ., s
X 6 x 0110
- + 7

12 11110100 8

A

Modular Arithmetic

Casting Integers in C 111

Number literals: 37 is signed, 37U is unsigned

Integer Casting:

Explicit casting:

int tx = (int) 73U; // still 73
unsigned uy = (unsigned) -4; // big positive #
Implicit casting: Actually does
tx = ux; // tx = (int)ux;
uy = ty; // uy = (unsigned)ty;
void foo(int z) { ... }
foo (ux) ; // foo((int)ux) ;

if (tx < ux) ... // if ((unsigned)tx < ux)

27

More Implicit Casting in C

If you mix unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned.

How are the argument
bits interpreted?

Argument, Op Argument, Type

0 == 0U unsigned
-1 < 0 signed
-1 < 0U unsigned
2147483647 < -2147483648

214774836470 < -2147483648

-1 < -2

(unsigned) -1 < -2

21477483647 < 214774836480

2147483647 < (int) 21474836480

Note: T, =-2,147,483,648 T, =2,147,483,647

Result

1
1
0

28

