
CS 240 SI Worksheet
Valerie Zhao
Session #10

3/7/17
Pointers and Memory Allocation

1. Fill in the following table, given that:

int** ben = (int**) 0x100C
char** ash = (char**) 0x100C //str

Data is stored in little endian (like in the x86), and each address is 4 bytes.
*note that within each byte, same order; lsbyte in low addr, each addr maps to 1 byte
(Both tables are parts of the heap.)

Address Content (in hex) Address Content (in hex)

0x1020 CA 03 26 8E 0x3154 28 19 0C D0

0x101C 00 00 31 44 0x3150 8C 9B AD 0C

0x1018 2C 38 95 AB 0x314C 74 9C DF 20

0x1014 00 00 31 50 0x3148 BB 2C 08 92

0x1010 00 00 31 40 0x3144 37 D7 99 0C

0x100C 00 00 31 48 0x3140 04 29 3A B6

 Type Numeric Value

&ash[1] char** 0x 00 00 10 10

ben int 0x 00 00 31 48

*(ash[2]) char 0x 0C

(ben-2) int unknown

(int**) ash - ben ptrdiff_t 0

(**ash) + 3
(if **(ash + 3):
need scale, because
explicit deref)

char 0x 95

sizeof(ben) size_t 4

2. Write a function that would, for each pointer in an array, allocate space for a 3-char word
using pointer arithmetic:
(Pretend that we don’t want to keep the pointers to the malloc locations.)

void printWords(char** jean) {

char** first = jean;
while (*first != NULL) { // char* isn’t null

char* loc = (char*)malloc(sizeof(char)*3);
first++;

}
}

Note that in actual programming this is really dangerous to do, since we’re
discarding the pointers to the space allocated by malloc: a memory leak will result
because we have no way of freeing the allocated space afterwards.

