

CS 240 SI Worksheet #15
Valerie Zhao

4/4/17
Call Stack

1. On the third page (in the given table), simulate the state of the call stack when main() calls

treat(7, &x), right up to (not including) when line 0x400638 (add $0x18, %rsp)
is executed for any of the recursive calls.

&x = 0x7ff…ffb00, *(&x) = 5
%rsp starts at 0x7ffffffffffffad0 (the top row of the table).
Make sure to keep track of %rsp in addition to the other register contents.

long int treat(long int a, long int* b) {
 if (a <= 0) {
 return *b;
 } else {
 return treat(a-*b, b);
 }
}

4005fc <treat>:
4005fc: sub $0x18,%rsp
400600: mov %rdi,0x8(%rsp)
400605: mov %rsi,(%rsp)
400609: cmpq $0x0,0x8(%rsp)
40060f: jg 0x40061a <treat+30>
400611: mov (%rsp),%rax
400615: mov (%rax),%rax
400618: jmp 0x400638 <treat+60>
40061a: mov (%rsp),%rax
40061e: mov (%rax),%rax
400621: mov 0x8(%rsp),%rdx
400626: sub %rax,%rdx
400629: mov (%rsp),%rax
40062d: mov %rax,%rsi
400630: mov %rdx,%rdi
400633: callq 0x4005fc <treat>
400638: add $0x18,%rsp
40063c: retq

(Adapted from CSE351 Autumn 2014 – Midterm Exam (29 October 2014), Problem 4A:
https://courses.cs.washington.edu/courses/cse351/16au/past-exams/cse351-14au-midterm.pdf)

What happens when the execution finishes and treat(7, &x) returns to main() ?
(In other words, what is different between the registers and stack you completed in the next
page, vs. the final contents of the stack and the registers after the function returns to main() ?)

%rip = 0x400827
%rsp = 0x7ffffffffffffad0 + 8 = 0x7ffffffffffffad8
Nothing else is different, including the state of the memory that was once the stack.

2. How do callee-saved registers work? What do functions do with them?

A function f preserves the value of a callee-saved register by pushing it onto the stack;
afterwards, the function is free to change the register value. However, before the function
terminates, it must pop the stack value back into that register (which requires that this
pop instruction is executed when %rsp is where the original register value is on the
stack). The register’s value is identical right before f was called and after f returns.

%rdi %rsi %rdx %rax

-3 0x7ff…ffb00 -3 0x7ff…ffb00

Memory address on
stack

Name/description of item Value

0x7ffffffffffffad0 Return address back to
main

0x400827

0x7ffffffffffffac8

0x7ffffffffffffac0 (0x400600) %rdi 7

0x7ffffffffffffab8
%rsp (0x4005fc)

(0x400605) %rsi 0x7ff…ffb00

0x7ffffffffffffab0
%rsp (0x400633)

return address 0x400638

0x7ffffffffffffaa8

0x7ffffffffffffaa0 (0x400600) %rdi 2

0x7ffffffffffffa98
%rsp (0x4005fc)

(0x400605) %rsi 0x7ff…ffb00

0x7ffffffffffffa90
%rsp (0x400633)

return address 0x400638

0x7ffffffffffffa88

0x7ffffffffffffa80 (0x400600) %rdi -3

0x7ffffffffffffa78
%rsp (0x400633)

(0x400605) %rsi 0x7ff…ffb00

0x7ffffffffffffa70

0x7ffffffffffffa68

