Digital Logic (Part 2) + Integer Representation (Part 1)

1. For the following circuit:

a. Write the truth table:

A	B	C	output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

b. Derive the boolean expression in sum-of-products form:

$A B C+A^{\prime} B C+A B^{\prime} C$

c. Simplify your answer from part b using the boolean algebra laws, and write the corresponding law next to each step.

$A B C+A^{\prime} B C+A B^{\prime} C$	(original)
$\left(A+A^{\prime}\right) B C+A B^{\prime} C$	Distributive
$B C+A B^{\prime} C$	Inverse/Complements, Identity
$\left(B+A B^{\prime}\right) C$	Distributive
$(B+A)\left(B+B^{\prime}\right) C$	Distributive
$(B+A) C$	Inverse/Complements, Identity
$(A+B) C$	Commutative

2. For the following circuit, derive the boolean expression and simplify it (with the laws you used written next to each step).

$\left(\left(A^{\prime}+B^{\prime}\right)(B+C) A\right)^{\prime}$	
$\left(\left(A^{\prime}(B+C)+B^{\prime}(B+C)\right) A\right)^{\prime}$	Distributive
$\left(A^{\prime}(B+C) A+B^{\prime}(B+C) A\right)^{\prime}$	Distributive
$\left(A A^{\prime}(B+C)+B^{\prime}(B+C) A\right)^{\prime}$	Commutative
$\left(B^{\prime}(B+C) A\right)^{\prime}$	Inverse/Complements, Identity
$\left(B^{\prime} B A+B^{\prime} C A\right)^{\prime}$	Distributive
$\left(B^{\prime} C A\right)^{\prime}$	Inverse/Complements, Identity
$\left(A B^{\prime} C\right)^{\prime}$	Commutative

3. What's 156 (in base 10) in binary?

10011100
a. What is it it in hexadecimal?

0x9C
b. What is $\mathbf{1 5 6}_{\mathbf{1 0}} \mathbf{+ \mathbf { 0 0 1 1 1 0 1 1 } _ { \mathbf { 2 } } \text { in binary form? }}$
(i.e. Don't use the base 10 number or convert the binary number into base 10...)
$\mathbf{1 0 0 1 1 1 0 0}_{\mathbf{2}} \mathbf{+} \mathbf{0 0 1 1 1 0 1 1}_{\mathbf{2}}=\mathbf{1 1 0 1 0 1 1 1}_{2}$
4. What is $\mathbf{2 5 6}$ in hexadecimal?
0×100
a. What is it in binary?
0×100000000
5. What is $\mathbf{1 1 1 1}$ in hexadecimal?

0xF

