Digital Logic (Part 2) + Integer Representation (Part 1)

1. For the following circuit:

a. Write the truth table:

Α	В	С	output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

b. Derive the boolean expression in <u>sum-of-products</u> form:

ABC + A'BC + AB'C

c. Simplify your answer from part b using the boolean algebra laws, and write the corresponding law next to each step.

gian none to outil top.	
ABC + A'BC + AB'C	(original)
(A+A')BC + AB'C	Distributive
BC + AB'C	Inverse/Complements, Identity
(B + AB')C	Distributive
(B+A)(B+B')C	Distributive
(B+A)C	Inverse/Complements, Identity
(A+B)C	Commutative

2. For the following circuit, derive the boolean expression and simplify it (with the laws you used written next to each step).

((A'+B')(B+C)A)' ((A'(B+C) + B'(B+C))A)' (A'(B+C)A + B'(B+C)A)' (AA'(B+C) + B'(B+C)A)' (B'(B+C)A)' (B'BA + B'CA)' (B'CA)' (AB'C)'

Distributive Distributive Commutative Inverse/Complements, Identity Distributive Inverse/Complements, Identity Commutative

- 3. What's **156** (in base 10) in <u>binary</u>? **10011100**
 - a. What is it it in <u>hexadecimal</u>? **0x9C**
 - b. What is $156_{10} + 00111011_2$ in <u>binary</u> form? (i.e. Don't use the base 10 number or convert the binary number into base 10...) $10011100_2 + 00111011_2 = 11010111_2$
- 4. What is 256 in <u>hexadecimal</u>? 0x100
 - a. What is it in <u>binary</u>? **0x10000000**
- 5. What is **1111**₂ in <u>hexadecimal</u>? **0xF**