Integer Representation

1. Using 8-bits (which is $\mathbf{1}$ byte [fill in the blank]), what's -25_{10} in:
a. Unsigned integer representation?

Not possible

b. Signed integer representation?

10011001
c. Two's complement representation?

11100111
i. What's $\mathbf{2 5}$ in two's complement?

00011001
2. Without looking at your notes or any other materials, fill in the following table for an 8 -bit binary integer:

Integer Representation	Minimum value (in base 10)	Maximum value (in base 10)
Unsigned	0	255
Signed	-127	127
Two's Complement	-128	127

3. Why is signed integer representation flawed? (2 reasons)

- Normal addition involving negative integers doesn't produce the right results
- Two representations of 0 (+/- 0)
a. How does two's complement remedy this?
- Addition involving negative integers is (usually) correct, i.e. if no overflow
- Only one representation of 0

4. Interpret the numbers given under "Integer in binary" according to the 3 different representations, then record the base-10 value it encodes:
(for example, 0100 is 4 in all 3 encodings.)

Integer in binary	Unsigned	Signed	Two's Complement
$\mathbf{1 0 1 0}$	10	-2	-6
0111	7	7	7
$\mathbf{1 1 1 1}$	15	7	-1
$\mathbf{0 0 0 0}$	0	0	0
$\mathbf{1 0 0 0}$	8	0	-8

5. Calculate 0010-0111:

0010-0111 = 1011

Steps of the borrow algorithm: (like subtraction in base 10, but in binary)

0010 ("A")

-0111 ("B")
1011

1. In the rightmost column (least significant bit), 0 in " A " is smaller than 1 in " B ", so 0 in "A" borrow from the bit to the left of it to become 10. 10-1 = $\mathbf{1}$.
2. Moving leftward, in the 2nd-to-rightmost column, 1 in "A" became 0 because of the borrowing from step 1 , which is smaller than 1 in " B ", so it borrows from the bit to the left of it to become 10. 10-1 =1.
3. In the 3rd-to-rightmost column, 0 in " A " became 1 because of the borrowing from step 2 WHICH required this 0 to also borrow from the bit to the left of it (most significant bit). In other words, this 0 in "A" borrowed from the most significant bit to become 10 before step 2 borrowed from it and it became 1 (It's like subtraction in base 10, ex. 123-49.). 1-1 = 0 .
4. In the leftmost column, just like in step 3,0 in "A" had to become 10 by borrowing from the bit to its left (imagine there was a 1 to its left--it'll maybe make sense in 4a) to become 10, then after step 3's borrowing it became 1. 1-0 = $\mathbf{1}$.
a. Essentially we're treating the equation as 10010-00111. Try doing the reverse, i.e. calculating 1011 + $0111 \rightarrow$ what do you get if you keep all bits of the result?

Steps of the two's complement algorithm: (even if the terms are in signed representation -- why?)

1. $-0111=+(-0111) \rightarrow-x=\sim x+1 \rightarrow 1001$
2. $0010+1001=1011$
a. What's the answer (in base 10) if this expression was in signed integer representation?

$$
1011_{2}=-3
$$

b. In two's complement?

$$
1011_{2}=-5
$$

c. How did overflow apply to what you did in parts a and b?

If you calculate 0111 + 1011 (this is the reverse of the given subtraction 0010-0111 = 1011 with the answer known), the complete result has 5 bits instead of 4. In signed integer representation, this indicates overflow. In two's complement, overflow was not an issue because despite the extra bit, the carry-in was equal to the carry-out, and it is not the case that the two terms being added have the same sign bit while the sum has the opposite sign bit.

