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Integer Representation 
 

1. Using ​8-bits​ (which is 1 ​byte​ ​[fill in the blank]​ ), what’s ​-25​10​ in: 
a. Unsigned​ integer representation?  

Not possible 
 
 

b. Signed​ integer representation? 
10011001 

 
 

c. Two’s complement​ representation? 
11100111 

 
 

i. What’s ​25​ in two’s complement? 
00011001 

 
 

2. Without looking at your notes or any other materials​, ​ fill in the following table for an ​8-bit 
binary integer: 

Integer Representation Minimum value (in base 10) Maximum value (in base 10) 

Unsigned 0 255 

Signed -127 127 

Two’s Complement -128 127 

 
3. Why is ​signed​ integer representation flawed? (2 reasons) 

- Normal addition involving negative integers doesn’t produce the 
right results 

- Two representations of 0 (+/- 0) 
 
 

a. How does ​two’s complement​ remedy this? 
- Addition involving negative integers is (usually) correct, i.e. if no 

overflow 
- Only one representation of 0 



4. Interpret the numbers given under “Integer in binary” according to the 3 different 
representations, then record the base-10 value it encodes:  
(for example, 0100 is 4 in all 3 encodings.) 

Integer in binary Unsigned Signed Two’s Complement 

1010 10 -2 -6 

0111 7 7 7 

1111 15 7 -1 

0000 0 0 0 

1000 8 0 -8 

 
5. Calculate ​0010 - 0111​: 

0010 - 0111 = 1011 
 
Steps of the borrow algorithm: ​(like subtraction in base 10, but in binary) 

  0 0 1 0   (“A”) 
- 0 1 1 1​   (“B”) 
  1 0 1 1 

1. In the rightmost column (least significant bit), 0 in “A” is smaller than 1 in “B”, so 0 
in “A” ​borrow from the bit to the left of it​ to become 10. ​10 - 1 = 1​. 

2. Moving leftward, in the 2nd-to-rightmost column, 1 in “A” became 0 because of 
the ​borrowing from step 1​, which is smaller than 1 in “B”, so it ​borrows from the 
bit to the left of it​ to become 10. ​10 - 1 = 1​. 

3. In the 3rd-to-rightmost column, 0 in “A” became 1 because of the borrowing from 
step 2 WHICH required this 0 to also borrow from the bit to the left of it (most 
significant bit). In other words, this 0 in “A” ​borrowed from the most significant bit 
to become 10 before step 2 borrowed from it and it became 1​ (It’s like subtraction 
in base 10, ex. 123 - 49.). ​1 - 1 = 0​. 

4. In the leftmost column, just like in step 3, 0 in “A” had to become 10 by ​borrowing 
from the bit to its left​ (imagine there was a 1 to its left--it’ll maybe make sense in 
4a) to become 10, then ​after step 3’s borrowing it​ became 1. ​1 - 0 = 1​. 

a. Essentially we’re treating the equation as ​10010 - 00111​. Try doing the 
reverse, i.e. calculating ​1011 + 0111 ​→ ​what do you get if you keep all 
bits of the result? 

 
Steps of the two’s complement algorithm:​ (even if the terms are in signed 

representation -- ​why?​ ) 
1. -0111 = +(-0111) → ​-x = ~x+1​ → 1001 
2. 0010 + 1001 = ​1011 

 



a. What’s the answer (in base 10) if this expression was in ​signed​ integer 
representation? 

1011​2​ = -3 
 
 
 
 

b. In ​two’s complement​? 
1011​2​ = -5 

 
 
 
 
 

c. How did ​overflow​ apply to what you did in parts a and b?  
If you calculate 0111 + 1011 (this is the reverse of the given 

subtraction 0010 - 0111 = 1011 with the answer known), the complete result has 5 bits 
instead of 4. In signed integer representation, this indicates overflow. In two’s 
complement, overflow was not an issue because despite the extra bit, the carry-in was 
equal to the carry-out, and it is not the case that the two terms being added have the 
same sign bit while the sum has the opposite sign bit. 


