
CS 240 SI Worksheet Solutions
Valerie Zhao

Session #3
2/2/17

Integer Representation

1. Using ​8-bits​ (which is 1 ​byte​ ​[fill in the blank]​), what’s ​-25​10​ in:
a. Unsigned​ integer representation?

Not possible

b. Signed​ integer representation?
10011001

c. Two’s complement​ representation?
11100111

i. What’s ​25​ in two’s complement?
00011001

2. Without looking at your notes or any other materials​, ​ fill in the following table for an ​8-bit
binary integer:

Integer Representation Minimum value (in base 10) Maximum value (in base 10)

Unsigned 0 255

Signed -127 127

Two’s Complement -128 127

3. Why is ​signed​ integer representation flawed? (2 reasons)

- Normal addition involving negative integers doesn’t produce the
right results

- Two representations of 0 (+/- 0)

a. How does ​two’s complement​ remedy this?
- Addition involving negative integers is (usually) correct, i.e. if no

overflow
- Only one representation of 0

4. Interpret the numbers given under “Integer in binary” according to the 3 different
representations, then record the base-10 value it encodes:
(for example, 0100 is 4 in all 3 encodings.)

Integer in binary Unsigned Signed Two’s Complement

1010 10 -2 -6

0111 7 7 7

1111 15 7 -1

0000 0 0 0

1000 8 0 -8

5. Calculate ​0010 - 0111​:

0010 - 0111 = 1011

Steps of the borrow algorithm: ​(like subtraction in base 10, but in binary)

 0 0 1 0 (“A”)
- 0 1 1 1​ (“B”)
 1 0 1 1

1. In the rightmost column (least significant bit), 0 in “A” is smaller than 1 in “B”, so 0
in “A” ​borrow from the bit to the left of it​ to become 10. ​10 - 1 = 1​.

2. Moving leftward, in the 2nd-to-rightmost column, 1 in “A” became 0 because of
the ​borrowing from step 1​, which is smaller than 1 in “B”, so it ​borrows from the
bit to the left of it​ to become 10. ​10 - 1 = 1​.

3. In the 3rd-to-rightmost column, 0 in “A” became 1 because of the borrowing from
step 2 WHICH required this 0 to also borrow from the bit to the left of it (most
significant bit). In other words, this 0 in “A” ​borrowed from the most significant bit
to become 10 before step 2 borrowed from it and it became 1​ (It’s like subtraction
in base 10, ex. 123 - 49.). ​1 - 1 = 0​.

4. In the leftmost column, just like in step 3, 0 in “A” had to become 10 by ​borrowing
from the bit to its left​ (imagine there was a 1 to its left--it’ll maybe make sense in
4a) to become 10, then ​after step 3’s borrowing it​ became 1. ​1 - 0 = 1​.

a. Essentially we’re treating the equation as ​10010 - 00111​. Try doing the
reverse, i.e. calculating ​1011 + 0111 ​→ ​what do you get if you keep all
bits of the result?

Steps of the two’s complement algorithm:​ (even if the terms are in signed

representation -- ​why?​)
1. -0111 = +(-0111) → ​-x = ~x+1​ → 1001
2. 0010 + 1001 = ​1011

a. What’s the answer (in base 10) if this expression was in ​signed​ integer
representation?

1011​2​ = -3

b. In ​two’s complement​?
1011​2​ = -5

c. How did ​overflow​ apply to what you did in parts a and b?
If you calculate 0111 + 1011 (this is the reverse of the given

subtraction 0010 - 0111 = 1011 with the answer known), the complete result has 5 bits
instead of 4. In signed integer representation, this indicates overflow. In two’s
complement, overflow was not an issue because despite the extra bit, the carry-in was
equal to the carry-out, and it is not the case that the two terms being added have the
same sign bit while the sum has the opposite sign bit.

