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Integer Representation 
 

1. Using 8-bits (which is 1 byte [fill in the blank] ), what’s -2510 in: 
a. Unsigned integer representation?  

Not possible 
 
 

b. Signed integer representation? 
10011001 

 
 

c. Two’s complement representation? 
11100111 

 
 

i. What’s 25 in two’s complement? 
00011001 

 
 

2. Without looking at your notes or any other materials,  fill in the following table for an 8-bit 
binary integer: 

Integer Representation Minimum value (in base 10) Maximum value (in base 10) 

Unsigned 0 255 

Signed -127 127 

Two’s Complement -128 127 

 
3. Why is signed integer representation flawed? (2 reasons) 

- Normal addition involving negative integers doesn’t produce the 
right results 

- Two representations of 0 (+/- 0) 
 
 

a. How does two’s complement remedy this? 
- Addition involving negative integers is (usually) correct, i.e. if no 

overflow 
- Only one representation of 0 



4. Interpret the numbers given under “Integer in binary” according to the 3 different 
representations, then record the base-10 value it encodes:  
(for example, 0100 is 4 in all 3 encodings.) 

Integer in binary Unsigned Signed Two’s Complement 

1010 10 -2 -6 

0111 7 7 7 

1111 15 7 -1 

0000 0 0 0 

1000 8 0 -8 

 
5. Calculate 0010 - 0111: 

0010 - 0111 = 1011 
 
Steps of the borrow algorithm: (like subtraction in base 10, but in binary) 

  0 0 1 0   (“A”) 
- 0 1 1 1   (“B”) 
  1 0 1 1 

1. In the rightmost column (least significant bit), 0 in “A” is smaller than 1 in “B”, so 0 
in “A” borrow from the bit to the left of it to become 10. 10 - 1 = 1. 

2. Moving leftward, in the 2nd-to-rightmost column, 1 in “A” became 0 because of 
the borrowing from step 1, which is smaller than 1 in “B”, so it borrows from the 
bit to the left of it to become 10. 10 - 1 = 1. 

3. In the 3rd-to-rightmost column, 0 in “A” became 1 because of the borrowing from 
step 2 WHICH required this 0 to also borrow from the bit to the left of it (most 
significant bit). In other words, this 0 in “A” borrowed from the most significant bit 
to become 10 before step 2 borrowed from it and it became 1 (It’s like subtraction 
in base 10, ex. 123 - 49.). 1 - 1 = 0. 

4. In the leftmost column, just like in step 3, 0 in “A” had to become 10 by borrowing 
from the bit to its left (imagine there was a 1 to its left--it’ll maybe make sense in 
4a) to become 10, then after step 3’s borrowing it became 1. 1 - 0 = 1. 

a. Essentially we’re treating the equation as 10010 - 00111. Try doing the 
reverse, i.e. calculating 1011 + 0111 → what do you get if you keep all 
bits of the result? 

 
Steps of the two’s complement algorithm: (even if the terms are in signed 

representation -- why? ) 
1. -0111 = +(-0111) → -x = ~x+1 → 1001 
2. 0010 + 1001 = 1011 

 



a. What’s the answer (in base 10) if this expression was in signed integer 
representation? 

10112 = -3 
 
 
 
 

b. In two’s complement? 
10112 = -5 

 
 
 
 
 

c. How did overflow apply to what you did in parts a and b?  
If you calculate 0111 + 1011 (this is the reverse of the given 

subtraction 0010 - 0111 = 1011 with the answer known), the complete result has 5 bits 
instead of 4. In signed integer representation, this indicates overflow. In two’s 
complement, overflow was not an issue because despite the extra bit, the carry-in was 
equal to the carry-out, and it is not the case that the two terms being added have the 
same sign bit while the sum has the opposite sign bit. 


