Bitwise Operations + Sequential Logic (Part 1)

1. Implement a C function that takes in 2 integers (x and y) and return $\mathbf{1}$ if $\mathbf{x}<\mathbf{y}$, else $\mathbf{0}$.

Use as few operators as possible, and only from the following: $!\sim \& \wedge \mid+\ll \gg$ Numbers are allowed.

Before you start: what test cases (sample values for x and y) would you use to prove that your implementation works? After implementing the function, simulate it on your test cases.

```
-x and +y
+x and -y
x}\mathrm{ and y with the same signs
one or both of the arguments being 0
etc.
```

(One possible solution--there could be several):

```
int lessThan(int x, int y) {
    int x_neg = (x>>31);
    int y_neg = (y>>31);
    return !((!x_neg & y_neg) | (!(x_neg ^ Y_neg) & (y+~x)>>31));
}
Cases where x<y is false (which are !-ed in the return statement):
(!x_neg & y_neg) : x is nonnegative while y is negative, so x > y
(!(x_neg ^ Y_neg) & (y+~x) >>31) :
            !(x_neg ^ y_neg): same signs
        (y+~x)>>31: sign bit of y+(-x-1)
                            (y-x-1 < 0 therefore y < x+1 or x+1 > y; moreover,
                    because x and y are both ints, this also tests if
                x != y (because if x==y, the less than relationship
                    does not hold, and y+1 > y through substitution)
```

2. a. Draw a D flip-flop with falling-edge trigger, complete with all of its gates (including the ones in the leader + follower D latches) and labels:

b. Simulate the behavior of the flip-flop you drew, given the waveforms of D and C :

What are the behaviors of Q_{L} / E and Q in relation to C ?
Q_{L} / E matches the state of D when C is on/high/1, but doesn't change once C is off/low/0.
Q updates to the state of Q_{L} / E right after C goes from on to off (falling edge); otherwise doesn't change.

How would the D flip-flop and its waveforms look if it has a rising-edge trigger? What would be the behaviors of Q_{L} / E and Q in relation to C ?

The D flip-flop would have a NOT gate between C and the Leader latch instead of the Follower latch.
(Try out the waveforms and see how Q_{L} / E and Q relate to C !)

