Floating Point + Pensieve Processing Review

1. Convert the following decimal numbers into $\underline{6 \text {-bit floating point representations; round if }}$ necessary: $(k=3, n=2)$
a. -2.6

$$
\begin{array}{ll}
M=2.6 / 2=1.3 & \text { frac }=01_{2} \\
E=1 \text { bias }=3 & \exp =1+3=4=100_{2}
\end{array} 110001_{2}
$$

b. 7

$$
\begin{array}{lll}
M=7 / 4=1.75 & \text { frac }=11_{2} & \\
E=2 \text { bias }=3 & \exp =5=101_{2} & 010111_{2}
\end{array}
$$

c. 0.27

$$
\exp =000 \quad \text { bias }=3 \quad \text { frac }=01_{2} \quad 000001_{2}
$$

2. Fill in the following table with patterns (formulas, if any) for types of floating points.

I'm not providing solutions here because I think it is important for you to summarize the properties of floating points yourself -- could be useful for the test

	Description	exp	frac	E	M
Normalized					$1 . x x x \ldots x$
Denormalized					
Special	0			n/a	n/a
				n/a infinity	
			n/a		
	NaN		$!=000 \ldots 0$	n/a	n/a

3. What is the maximum nonnegative 8 -bit floating point number $(k=4, n=3)$? (Besides infinity...) $\mathbf{0 1 1 1 0 1 1 1}_{2}$

$$
\begin{aligned}
& \exp =111_{2}=14 \\
& \text { frac }=111_{2}
\end{aligned}
$$

$$
\text { bias }=2^{4-1}-1=7
$$

$$
E=\exp -\text { bias }=7
$$

$$
M=1.111=1 \mathrm{t} / \mathrm{s}
$$

$$
V=(17 / 8) * 10^{7}
$$

