CS 240 SI Worksheet Valerie Zhao Session #8 2/28/17

Floating Point + Pensieve Processing Review

 Convert the following decimal numbers into <u>6-bit floating point</u> representations; <u>round if</u> <u>necessary</u>: (k = 3, n = 2)

a.	-2.6						
	M = 2.6/2 = 1.3	$frac = 01_2$					
	E = 1 bias = 3	exp = 1+3 = 4 = 100 ₂	2 110001 ₂				
b.	7						
	M = 7/4 = 1.75	$frac = 11_2$					
	E = 2 bias = 3	exp = 5 = 101 ₂	010111 ₂				
c.	0.27						
	exp = 000 bias	= 3 frac = 01 ₂	000001 ₂				

 Fill in the following table with <u>patterns (formulas, if any)</u> for types of floating points.
I'm not providing solutions here because I think it is important for you to summarize the properties of floating points yourself -- could be useful for the test

	Description	exp	frac	E	Μ
Normalized					1.xxxx
Denormalized					
Special	0			n/a	n/a
	+/- infinity			n/a	n/a
	NaN		!= 0000	n/a	n/a

 What is the maximum nonnegative 8-bit floating point number (k = 4, n = 3)? (Besides infinity...)

01110111 ₂	exp = 1110 ₂ = 14	bias = 2 ⁴⁻¹ -1 = 7	E = exp - bias = 7
	$frac = 111_2$	M = 1.111 = 1 1⁄/₃	V = (1 ⁷ / ₈) * 10 ⁷