
 

CS 240 SI Worksheet #19 
Valerie Zhao 

4/19/17 
Exam #2 Review 

 
1. Given an ​initially empty ​cache with ​16-bit addresses ​and a ​capacity of 512 bytes​, for 
byte-addressable ​memory: 
 

a. Suppose the cache is ​2-way set-associative, ​and follows the ​write-back ​and​ least recently 
used ​policies​. ​For the following code, if the cache ​miss rate is 1/8, ​then: 
 
char[256][4] A; ​// A starts at address 0x1000 
char[256][4] B; ​// B starts at address 0x2000 
for (i = 0; i < 256; i++) { 

for(j = 0; j < 4; j++) { 
A[i][j] = B[i][j]; 

} 
} 
 

i. How many bytes are in ​one block​ of the cache? 
 
 
 
 

ii. How many ​sets​ are in the cache? 
 
 
 
 

iii. How many ​bits ​are used to encode the ​tag ​of the blocks? 
 
 
 
 
 
  

(Adapted from University of Washington CSE 351 Final Exam - Winter 2017, Problem 1 & 3: 
https://courses.cs.washington.edu/courses/cse351/17sp/past-exams/cse351-17wi-final.pdf) 
 



b. Suppose the cache is ​direct mapped ​(but still with a capacity of 512 bytes for 
byte-addressable memory, using the same policies as in part a). 
 

i. If ​A starts at 0x1000​ and ​B starts at 0x2000​ (like in part a), what is the ​miss ​rate for 
the code above if the cache block size is 

1. 4​ bytes? 
 
 
 
 

2. 8 ​bytes? 
 
 
 
 

3. 16 ​bytes? 
 
 
 
 

ii. If ​A starts at 0x1000​ and ​B starts at 0x1FF0​, what is the ​miss ​rate for the code above 
if the cache block size is 

1. 4​ bytes? 
 
 
 
 

2. 8 ​bytes? 
 
 
 
 

3. 16 ​bytes? 
 
 
 

 
 
 
 
 
 
 
 
 

 



2. Consider the following (partially blank) x86-64 assembly, (partially blank) C code, and memory 
listing. ​Addresses and values are 64-bit​, and the machine is ​little-endian​. All the values in memory 
are in hex, and the address of each cell is the sum of the row and column headers: for example, 
address 0x1019 contains the value 0x18. 
 

Assembly code: 
 
foo: 

movl $0, ______ 
L1: 

cmpq $0x0, %rdi 
je L2 
cmp _____, 0x1(%rdi) 
je ______ 
mov 0x8(%rdi), %rdi 
jmp _______ 

L2: 
ret 

L3: 
mov (%rdi), %eax 
jmp L2 

 

C code: 
 
typedef struct person { 

char height; 
char age; 
struct person* next_person;  

} person;  
 
int foo(person* p) {  

int answer = ______;  
while (_________) {  

if (p->age == 24){  
answer = p-> ________;  
break;  

}  
p = _______________;  

}  
return answer; 

}  

 

 
a. Complete the assembly and C code. 

 
 
 

 



b. Trace the execution of the call to  ​foo((person*) 0x1028) ​ in the following table. Show 
which instruction is executed in each step until foo returns. In each space, place the assembly 
instruction and the values of the appropriate registers after that instruction executes. You may 
leave those spots blank when the value does not change. You might not need all steps listed 
on the table. 
 

Instruction  %rdi (hex) %eax (decimal)  

movl 0x1028 0 

cmpq   

je   

   

   

   

   

   

   

   

   

   

   

   

   

 
 

c. Briefly describe the value that ​foo ​ returns and how it is computed. Use only variable names 
from the C version in your answer. 

 


