Integer Representation

1. Using 8 -bits (which is 1 \qquad [fill in the blank]), what's $-\mathbf{2 5}_{10}$ in:
a. Unsigned integer representation?
b. Signed integer representation?
c. Two's complement representation?
i. What's $\mathbf{2 5}$ in two's complement?
2. Without looking at your notes or any other materials, fill in the following table for an 8-bit binary integer:

Integer Representation	Minimum value (in base 10)	Maximum value (in base 10)
Unsigned		
Signed		
Two's Complement		

3. Why is signed integer representation flawed? (2 reasons)
a. How does two's complement remedy this?
4. Interpret the numbers given under "Integer in binary" according to the 3 different representations, then record the base-10 value it encodes:
(for example, 0100 is 4 in all 3 encodings.)

Integer in binary	Unsigned	Signed	Two's Complement
1010			
0111			
1111			
0000			
1000			

4. Calculate 0010-0111:
a. What's the answer (in base 10) if this expression was in signed integer representation?
b. In two's complement?
c. How did overflow apply to what you did in parts a and b ?
