CS 240 SI Worksheet Valerie Zhao Session #3 2/2/17

Integer Representation

- 1. Using <u>8-bits</u> (which is 1 ______ [*fill in the blank*]), what's **-25**₁₀ in:
 - a. <u>Unsigned</u> integer representation?
 - b. Signed integer representation?
 - c. <u>Two's complement</u> representation?
 - i. What's **25** in two's complement?
- 2. <u>Without looking at your notes or any other materials</u>, fill in the following table for an <u>8-bit</u> binary integer:

Integer Representation	Minimum value (in base 10)	Maximum value (in base 10)
Unsigned		
Signed		
Two's Complement		

- 3. Why is <u>signed</u> integer representation flawed? (2 reasons)
 - a. How does two's complement remedy this?

 Interpret the numbers given under "Integer in binary" according to the 3 different representations, then record the base-10 value it encodes: (for example, 0100 is 4 in all 3 encodings.)

Integer in binary	Unsigned	Signed	Two's Complement
1010			
0111			
1111			
0000			
1000			

- 4. Calculate **0010 0111**:
 - a. What's the answer (in base 10) if this expression was in <u>signed</u> integer representation?
 - b. In two's complement?

c. How did overflow apply to what you did in parts a and b?