Combinational Logic + Logic for Arithmetics (Part 1)

1. For the following truth table, derive a simplified boolean expression using Karnaugh maps:
ABCD M
$0000 \quad 1$
$0001 \quad 0$
$0010 \quad 1$
$0011 \quad 0$
$0100 \quad 0$
$0101 \quad 0$
$0110 \quad 0$
$0111 \quad 1$
$1000 \quad 1$
$1001 \quad 0$
$1010 \quad 1$
$1011 \quad 0$
$1100 \quad 1$
$1101 \quad 1$
$1110 \quad 0$
1111 0
a. What makes Karnaugh maps useful for generating expressions in minimal sum-of-products form?
2. Implement a 1-bit full adder.
3. Implement a 3-to-1 MUX with 3-input gates: input line $=\mathrm{D}$, output line $=F$, select line $=S$
a. What is its high-level behavior? (Or what is its purpose?)
4. Implement a $\underline{3-\text { bit }}$ decoder: input line $=B$, output line $=D$
a. How many outputs does an n-bit decoder have?
