CS 240 SI Worksheet Valerie Zhao Session #4 2/7/17

Combinational Logic + Logic for Arithmetics (Part 1)

1. For the following truth table, derive a simplified boolean expression using Karnaugh maps:

ABCD	Μ
0000	1
0001	0
0010	1
0011	0
0100	0
0101	0
0110	0
0111	1
1000	1
1001	0
1010	1
1011	0
1100	1
<u>1101</u>	1
1110	0
1111	0

- a. What makes Karnaugh maps useful for generating expressions in minimal sum-of-products form?
- 2. Implement a 1-bit <u>full</u> adder.

3. Implement a <u>3-to-1 MUX</u> with 3-input gates: input line = D, output line = F, select line = S

- a. What is its high-level behavior? (Or what is its purpose?)
- 4. Implement a <u>3-bit</u> decoder: input line = B, output line = D

a. How many outputs does an n-bit decoder have?