
Laboratory 11
Processes

Computer Science 240

	

Processes	
	

Operating System
The set of software that controls the overall operation of a computer
system, typically by performing such tasks as memory allocation, job
scheduling, and input/output control.

Kernel
The part of the operating system that runs in privileged or supervisory
mode (has access to all instructions and memory in the system). It does all
sorts of things like interact with hardware, do file I/O, and spawn off
processes. The kernel is the center of the operating system that manages
everything.

Shell
A user interface for access to an operating system's services, which
translates user commands to low-level calls to the kernel.

Process	
Instance	of	a	program	in	execution.		A	process	provides	the	illusion	
that	the	program	has	exclusive	use	of	the	processor	and	exclusive	use	
of	the	memory	system.		In	Linux,	when	you	run	a	program	by	typing	
the	name	of	an	executable	object	file	to	the	shell,	the	shell	creates	a	
new	process	with	the	help	of	the	kernel.	
	
	
	
	
	
	

	
	
	
Context	
A	program	runs	in	the	context	of	some	process,	where	the	context	is	
the	state	needed	to	run	correctly.		State	consists	of:	
• Program’s	code	and	data	stored	in	memory	
• Stack		
• Registers	
• Program	Counter	
• Environment	variables	
• Set	of	open	file	descriptors	

	
Context	Switch	
The	kernel	maintains	a	context	for	each	process.		When	the	kernel	
pre-empts	the	running	process	with	a	new	process	or	a	previously	
running	process,	it		is	called	a	context	switch:		the	context	of	the	
current	process	must	be	saved,		the	context	of	the	new	process	must	
be	asserted,		and	then		control	is	passed	to	the	preempting	process.	
	
System	Calls	
The	execve()	function	replaces	the	current	process’	code	and	context	
(registers,	memory)	with	that	of	a	different	program.	
	
The	fork()	function	is	called	by	a	parent	process	to	create	a	new	
running	child	process.		The	child	process	is	almost	identical	to	the	
parent	(it	inherits	an	identical	(but	separate)	copy	of	the	address	
space,	and	all	open	files).		The	main	difference	is	that	the	child	has	a	
different	PID	(process	ID).			
	
Fork	is	called	by	the	parent	process,	but	returns	twice:	once	to	the	
parent	process,	returning		the	value	of	the	child	PID,	and	once	to	the	
child,	with	a	return	value	of	0.	

	
The	parent	and	child	processes	run	concurrently,	and	their	instruction	
flows	can	be	interleaved	by	the	kernel	in	an	arbitrary	way.	
	
The	waitpid(pid)	function	pauses	execution	of	the	process	which	
calls	it,	and	waits	until	the	process	with	the	specified	pid	terminates.		
It	can	be	used	to	enforce	a	given	order	of	execution	for	different	
processes.	
	
The	getpid()	function	returns	the	pid	of	the	process	which	calls	it.		
	
Zombies	
When	a	process	terminates,	it	is	not	immediately	removed	from	the	
system	by	the	kernel.		Instead,	it	is	kept	until	the	parent	reaps	the	
terminated	child,	at	which	point	the	kernel	passes	the	child’s	exit	
status	to	the	parent.		Until	it	is	reaped,	it	is	called	a	zombie.	
	
A	zombie	is	not	running,	but	does	use	memory	resources	to	maintain	
some	of	its	state.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Diagrams	for	Understanding	Process	Execution	
	

	

