Perform addition on the following binary and hexadecimal numbers (assume two’s complement format!). Indicate whether there is a carry-out or an overflow for each addition.

For the first 2 calculations, assume 16-bit representation. Do the calculation using the binary values.

Then, convert the result to hexadecimal notation. To convert, divide the 16 binary digits of the result into groups of 4, and translate each group to the corresponding hexadecimal value. Note that if there is a carry-out, that is the 17th bit, and it is not used in result or in the hexadecimal translation!

1.
\[
\begin{align*}
0111111111111111 & \quad \text{Binary result:} \\
+ \quad 0111111111111111 & \quad \text{Hexadecimal result:}
\end{align*}
\]

Carry-Out? Overflow?

2.
\[
\begin{align*}
0111111100000000 & \quad \text{Binary result:} \\
+ \quad 0111111110011001 & \quad \text{Hexadecimal result:}
\end{align*}
\]

Carry-Out? Overflow?

Now, assume 32-bit representation, using hexadecimal notation, and specify result in hexadecimal.

3.
\[
\begin{align*}
0x\ A\ A\ F\ 9\ 0\ 1\ 4 & \quad \text{Hexadecimal result:} \\
+ \quad 0x\ A\ A\ E\ 3\ C\ D\ 1\ 2 & \quad \text{Hexadecimal result:}
\end{align*}
\]

Carry-Out? Overflow?

4.
\[
\begin{align*}
0x\ 7\ F\ A\ A\ 3\ 2\ 7\ 8 & \quad \text{Hexadecimal result:} \\
+ \quad 0x\ 6\ 0\ 2\ 4\ C\ D\ 1\ 2 & \quad \text{Hexadecimal result:}
\end{align*}
\]

Carry-Out? Overflow?
Examine the following C statements:

```c
int x,y;
int sum = x + y;
int overflow = ((x > 0 && y > 0 && sum < 0) || (x < 0 && y < 0 && sum > 0));
long int carryout = (((long int)x + (long int)y) >> 32);
```

5. Explain why the expressions for overflow and carryout when x and y are added will yield the correct result:

Use specific values for x and y (same as from exercises 3 and 4 above) to show that the correct results for overflow and carryout are performed for the given C expressions:

6.
 x = 0x A A F F 9 0 1 4
 y = 0x A A E 3 C D 1 2

7.
 x = 0x 7 F A A 3 2 7 8
 y = 0x 6 0 2 4 C D 1 2

8. Complete Modules 1 and 2 of the Linux Survival (linuxsurvival.com) tutorial. It runs in the web browser, so you do not need to yet access a real Linux machine to get started (we will practice doing that in lab this week).