CS 240 Lab 3 Basic Digital Circuits

- Multiplexer
- Decoder
- Adder
- ALU

Multiplexer

- n select lines
${ }^{-} 2^{n}$ input lines
- 1 output

One of the possible 2^{n} inputs is chosen by the n select lines, and gated through to the output of a multiplexer.

S2	S1	S0	\mathbf{Q}
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Multiplexers are usually used for selection, but can also act as code detectors.
Decoder

- n input/select lines
- 2^{n} outputs
- only one of the outputs is active at any given time, based on the value of the n select lines.

Half-Adder - adds two one-bit values

Full Adder - incorporates a carry-in

Cout

A	B	Cin	Sum	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	Sum $=A \oplus B \oplus C i n$
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

n -bit adder $=\mathrm{n}$ 1-bit adders

Carry-out of each adder = Carry-in of the adder for next two most significant bits being added

ALU

Want to be able to select whether the ALU will produce the bitwise AND, OR, and sum as a result.

The basic operations and results are:
add $(a+b+C i n)$,
AND (a AND b),
OR (a OR b),

Adding the ability to choose whether to invert A or B provides additional operations:
sub (invert $b, \operatorname{Cin}=1, a+b+C i n)$

NOR (invert a, invert b, a AND b)

invA invB					
0	Cin	Op1	Op0	Result	
0	0	X	0	0	a AND b
0	0	X	0	1	a OR b
0	0	$0 / 1$	1	0	$\mathrm{a}+\mathrm{b}$
0	1	1	1	0	$\mathrm{a}-\mathrm{b}$
1	1	X	0	0	a NOR b

