CS 240 Lab 3 Basic Digital Circuits

- Multiplexer
- Decoder
- Adder
- ALU

Multiplexer

- n select lines
- ⁻2ⁿ input lines
- 1 output

One of the possible 2ⁿ inputs is chosen by the n select lines, and gated through to the output of a multiplexer.

<u>S2</u>	<u>S1</u>	S0	Q
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Multiplexers are usually used for **selection**, but can also act as code detectors.

Decoder

- n input/select lines
- 2ⁿ outputs
- only one of the outputs is active at any given time, based on the value of the n select lines.

<u>S2</u>	S1	S0	$\mathbf{Q0}$	Q1	\mathbf{Q}^2	\mathbf{Q}	3 Q	4 Q	5 Q	6 Q 7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Half-Adder — adds two one-bit values

		<u>A</u>	В	Sum	Cout
A	——————————————————————————————————————	0	0		
В		0	1		
		1	0		
	\Box	1	1		
	Cout				

Full Adder - incorporates a carry-in

<u>A</u>	В	Cin	Sum	Cout	
0	0	0	0	0	Sum = A⊕B⊕Cin
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	Cout = $AB+(A \oplus B)Cin$
1	0	1	0	1	,
1	1	0	0	1	
1	1	1	1	1	

n-bit adder = n 1-bit adders

Carry-out of each adder = Carry-in of the adder for next two most significant bits being added

ALU

Want to be able to select whether the ALU will produce the bitwise AND, OR, and sum as a result.

The basic operations and results are:

Adding the ability to choose whether to invert A or B provides additional operations:

sub (invert b,
$$Cin = 1$$
, $a + b + Cin$)

NOR (invert a, invert b, a AND b)

<u>inv</u>	<u>'A invB</u>	<u>Cin</u>	<u>Op1</u>	Op0	Result
0	0	X	0	0	a AND b
0	0	X	0	1	a OR b
0	0	0/1	1	0	a + b
0	1	1	1	0	a - b
1	1	X	0	0	a NOR b