1. Give the truth table and draw the circuit diagram for the SR latch:

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>Q'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

2. Assume the inputs are $S=0$ and $R=0$. Do you know if the output Q is 0 or 1? Explain.

3. Assume you have a clocked SR latch. Draw Q, given the following CK, S, and R:

4. Assume you have a clocked SR flip-flop, that is activated on the positive edge of the clock. Draw Q given the same CK, S, and R:

5. Explain why the outputs are different for the latch and the flip-flop:
6. Review the notes from lecture on the HW ISA (an instruction set architecture for a small machine), and answer the following questions.

- How many instructions are there in the HW instruction set?

- How many bits are there in each instruction?

- What assembly language instruction is represented by the hexadecimal value 0x0021? (each digit represents 4 bits). Describe what you expect the instruction to do.

- What is the 16-bit binary form of the following instruction?

 ADD R1 R1 R4

- What are the contents of Register 1 and Register 4 after this instruction is executed?

- Given the following instruction stored at address 8 in memory:

 8: BEQ R5 R6 C

 Assume register 5 contains FFFE, and register 6 contains FFFE and that the offset is interpreted as a signed, 4-bit, two's complement values.

 After this instruction is executed, what will be the address of the next instruction?

- Repeat the previous question, but assume that the original value of register 5 = 0003, and register 6 = 0002. What will be the address of the next instruction?