Exceptional Control Flow:
Hardware support for reacting to the rest of the world.

Control Flow

Processor: read instruction, execute it, go to next instruction, repeat

Physical control flow Explicit changes:

<startup>
Inst,
Inst,
Inst;

Exceptional changes:

time

Inst,,
<shutdown>

Exceptions

Synchronous: caused by instruction
Traps: system calls

Aborts: unintentional, unrecoverable

Asynchronous (Interrupts): caused by external events

incoming 1/O activity, reset button, timers, signals

Exceptions: hardware support for OS

transfer control to OS in response to event
What code should the OS run?

event

User Code

exception

OS Kernel

return or abort

) v . .
exception processing
by exception handler

Interrupt Vector

in memory
special register holds base address

code for
exception handler O
Exception
Table code for
exception handler 1
0 ¢
1 o« code for
2 « exception handler 2
n-1 o

code for
exception handler n-1

a jump table for exceptions...

Open a file (trap/system call)

User process calls: open (filename, options)

open executes system call instruction int

0804d070 < 1libc open>:

8044d082: cd 80 int $0x80

804d084: 5b pPop sebx
User Code OS Kernel
intd exception

(0]
p pN opeéen file
returns

v

Segmentation Fault

int a[10007]; . _ . .
void bad () 1 Write to invalid memory location.

al[5000] = 13;
}

80483b7: c¢7 05 60 3 04 08 0d movl $0xd, 0x804e360

User Code OS Kernel

movll exception: page fault

] detect invalid address
» signal process

aborts process with SIGSEGV signal

Page Fault

Write to valid

memory location

int a[1l000];
main () {

al500] =
}

13;

... but contents currently on disk instead

(more later: virtual

memory)

80483b7: c¢7 05 10 9d 04 08 0d

movl SO0xd, 0x8049d10

User

mov| ¥

Code OS Kernel

exception: page fault

reexecute

same instruction

Load page into
memory

