
Exceptional Control Flow:
Hardware support for reacting to the rest of the world.

Control Flow
Processor: read instruction, execute it, go to next instruction, repeat

2

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

Physical control flow

tim
e

Explicit changes:
Jumps (conditional, unconditional)
Call, return

Exceptional changes:
user input
data arrives from disk or network
unexpected errors
system calls

Exceptions

Synchronous: caused by instruction
Traps: system calls

Intentional: transfer control to OS to perform some function.
OS runs at higher privilege level, so cannot call directly.
Returns control to “next” instruction.

Faults: unintentional, maybe recoverable
page faults, protection faults, divide by zero
Fix and re-execute faulting instruction or abort process.

Aborts: unintentional, unrecoverable
hardware failure detected

Asynchronous (Interrupts): caused by external events
incoming I/O activity, reset button, timers, signals

transfer control to OS in response to event
What code should the OS run?

User Code OS Kernel

exception
exception processing
by exception handler

return or abort

event

4

Exceptions: hardware support for OS

Interrupt Vector

5

0
1
2 ...

n-1

Exception
Table

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

a jump table for exceptions…

in memory
special register holds base address

Open a file (trap/system call)

7

User process calls: open(filename, options)
open executes system call instruction int

0804d070 <__libc_open>:
. . .
804d082: cd 80 int $0x80
804d084: 5b pop %ebx
. . .

User Code OS Kernel

exception

open file
returns

int
pop

int a[1000];
void bad () {

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Code OS Kernel

exception: page fault

detect invalid address
movl

signal process

Segmentation Fault

8

Write to invalid memory location.

aborts process with SIGSEGV signal

Write to valid memory location
... but contents currently on disk instead
(more later: virtual memory)

int a[1000];
main () {

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User Code OS Kernel

exception: page fault
Load page into
memoryreexecute

same instruction

movl

9

Page Fault

