Floating-point numbers

Fractional binary numbers

|IEEE floating-point standard
Floating-point operations and rounding
Lessons for programmers

Many more details we will skip (it’s a 58-page standard...)
See CSAPP 2.4 for more detail.

Fractional Binary Numbers

2i
2i—1

4
2
‘ — 1
bi Dy see b, by by @ by b, b
12 — \
1/4

1/8

2-J

Fractional Binary Numbers

Value Representation
5and 3/4
2 and 7/8
47/64

Observations

Shift left =

Shift right =

Numbers of the form 0.111111.., are...”?
Limitations:

Exact representation possible when?

1/3 = 0.333333..., =

Fixed-Point Representation

Implied binary point.
b; bg bs by bs [.] by by by
b; bg bs by bs b, by by []

range: difference between largest and smallest representable numbers

precision: smallest difference between any two representable numbers

fixed point = fixed range, fixed precision

IEEE Floating Point Standard 754

IEEE = Institute of Electrical and Electronics Engineers

Numerical form:

Vio=(-1)° * m*2"

Sign bit s determines whether number is negative or positive
Significand (mantissa) M usually a fractional value in range [1.0,2.0)
Exponent E weights value by a (-/+) power of two

Analogous to scientific notation

Representation:
MSB s = sign bit s
exp field encodes E (but is not equal to E)
frac field encodes M (but is not equal to M)

s | exp frac

Numerically well-behaved, but hard to make fast in hardware

Precisions

Single precision (f£loat): 32 bits

s | exp

frac

1 bit

8 bits

23 bits

Double precision (double): 64 bits

s | exp

frac

1 bit

11 bits

52 bits

Finite representation of infinite range...

Three kinds of values

V=(-1)*M* pld s | exp frac

1. Normalized: M = 1.xxxxXx...

As in scientific notation: 0.011x2°=1.1x 23

Representation advantage?

2. Denormalized, near zero: M = 0.xxxxx..., smallest E

Evenly space near zero.

3. Special values:

0.0: s=0 exp=00..0 frac =00...0
+inf, -inf: exp=11...1 frac=00..0
division by 0.0

NaN (“Not a Number”): exp=11...1 frac#00...0

sgrt(-1), oo — o0, oo * 0, etc.

Value distribution

-Normalized

-Denormalized +Denormalized

+Normalized

7

-0.0 +0.0

NaN

Normalized values, with £1oat example

V=(-1)*M* pld s | exp frac

k=8 n=23

Value: float £ 12345.0;
12345, =11000000111001,
=1.1000000111001, x 23 (normalized form)

Significand:
M = 1.1000000111001,
frac= 10000001110010000000000,
Exponent: £ = exp — Bias > exp = E + Bias
E = 13
Bias = 127 = 27-1=2k1-1 Splits exponents roughly -/+
exp = 140 = 10001100,
Result:

0(10001100(|10000001110010000000000

S exp frac

2. Denormalized Values: near zero

"Near zero": exp = 000...0

Exponent:

E=1+exp—Bias=1-Bias not: exp—Bias
Significand: leading zero

M=0.xxx...X,

frac = xxx..x

Cases:
exp =000...0, frac=000...0 0.0, -0.0
exp =000..0, frac#000...0

Value distribution example

6-bit IEEE-like format
Bias=231-1=3

s | exp frac
1 3 2
frac= 00, 10, 11
s=0, exp=101 M = 1.00, 1 Ol 1.10, l 11
F=53=2 \ \
l_‘_\
—_— -
\
-15 -10 -5 0 5 10 \
¢ Denormalized A Normalized Infinity
s=0, exp=110
EF=6-3=3

12

Value distribution example (zoom in on 0)

6-bit IEEE-like format
Bias=231-1=3

s | exp frac

same spacing
exp=000 /\
E=1-3=-2
s=1, exp=010 Denormalized s=0, exp=001

F=2-3=-1 = evenly spaced E=1-3=-2

A |\ |\
| | [1]

A—A—A—A A—A—A—A

-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

13

Try to represent 3.14, 6-bit example

6-bit IEEE-like format
Bias=231-1=3

s | exp frac

1 3 2

Value: 3.14;

3.14=11.0010 0011 1101 0111 0000 1010 000...
=1.1001 0001 1110 1011 1000 0101 0000... , x 2! (normalized form)

Significand:
M = 1.10010001111010111011100001010000... ,
frac= 10,

Exponent:
E=1 Bias =3 exp = 4=100,

Result:

0 100 10 = 1.10,x2'=3 nexthighest?

Floating Point Arithmetic*

V= (—1)S *M * ZE s | exp frac

double x = ..., v = ...;
double z =

1. Compute exact result.
2. Fix/Round, roughly:

Adjust M to fitin [1.0, 2.0)...

If M >= 2.0: shift M right, increment E
If M < 1.0: shift M left by k, decrement E by k

Overflow to infinity if £ is too wide for exp
Round* M if too wide for £rac.
Underflow if nearest representable value is O.

*complicated...

Lessons for programmers

V=(—1)S*I\/I*2E s | exp frac

float # real number # double
Rounding breaks associativity and other properties.

double a = ..., b = ...;

St (s mm v

1f (abs(a - b) < epsilon)

