
Integer Representation

Representation of integers: unsigned and signed
Modular arithmetic and overflow
Sign extension
Shifting and arithmetic
Multiplication
Casting

1

Wellesley CS 240
modular arithmetic, overflow

4

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

0
1

2

3

4

5

6
78

9

10

11

12

13

14
15

unsigned overflow = "wrong" answer = wrap-around
= carry 1 out of MSB = math answer too big to fit

x+y in n-bit unsigned arithmetic is (x + y) mod 2N in math

4-bit
unsigned
integers

11
+ 2

13
+ 5

Unsigned addition overflows if and only if a carry bit is dropped.

1011
+ 0010

1101
+ 0101

sign-magnitude

Most-significant bit (MSB) is sign bit
0 means non-negative 1 means negative

Remaining bits are an unsigned magnitude

8-bit sign-magnitude: Anything weird here?
00000000 represents _____

01111111 represents _____

10000101 represents _____

10000000 represents _____

6

!!!

ex

00000100
+10000011

Arithmetic?
Example:
4 - 3 != 4 + (-3)

Zero?

(4-bit) two's complement
signed integer representation

4-bit two's complement integers:

minimum =

maximum =

8

1 0 1 1
-23 22 21 20

= 1 x -23 + 0 x 22 + 1 x 21 + 1 x 20

compareto unsigned

two’s complement vs. unsigned

9

_ _ … _ _ _
2n-1 2n-2 … 22 21 20

-2n-1 2n-2 … 22 21 20
two's complement
places

unsigned
places

What's the difference?

minimum = maximum =

n-bit unsigned numbers:

8-bit representations

10

1 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1

0 0 0 0 1 0 0 1

0 0 1 0 0 1 1 1

n-bit two's complement numbers:

minimum = maximum =

ex

4-bit unsigned vs. 4-bit two’s complement

11

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

0
1

2

3

4

5

6
78

9

10

11

12

13

14
15

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

11 -5difference = ___ = 2___

1 0 1 1
1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 1 x -23 + 0 x 22 + 1 x 21 + 1 x 20

4-bit
unsigned

4-bit
two's

complement

Another derivation

How should we represent 8-bit negatives?
• For all positive integers x,

we want the representations of x and –x to sum to zero.
• We want to use the standard addition algorithm.

00000001 00000010 00000011
+ + +
00000000 00000000 00000000

• Find a rule to represent –x where that works…

16

ex

unsigned shifting and arithmetic

20

0 0 0 1 1 0 1 1
y = x << 2;

0 0 0 1 1 0 1 1 0 0

x = 27;

y == 108

1 1 1 0 1 1 0 1
y = x >> 2;

0 0 1 1 1 0 1 1 0 1

x = 237;

y == 59

unsigned

x*2n mod 2w

⎣x/2n⎦

unsigned

logical shift left

logical shift right

It’s complicated…

two's complement shifting and arithmetic

21

arithmetic shift right

1 1 1 0 1 1 0 1
y = x >> 2;

1 1 1 1 1 0 1 1 0 1

x = -19;

y == -5

signed

⎣x/2n⎦

1 0 0 1 1 0 1 1
y = x << 2;

1 0 0 1 1 0 1 1 0 0

x = -101;

y == 108 logical shift left

signed

shift-and-add
Available operations

x << k implements x * 2k

x + y

Implement y = x * 24 using only <<, +, and integer literals

22

ex What does this function compute?
unsigned puzzle(unsigned x, unsigned y) {
unsigned result = 0;
for (unsigned i = 0; i < 32; i++){
if (y & (1 << i)) {
result = result + (x << i);

}
}
return result;

}

23

ex

