Program, Application

Programming Language Tod ay

Welcome to

CS 240:

Foundations of

Computer
Systems

Compiler/Interpreter What is CS 240?

Operating System

Why take CS 2407
Instruction Set Architecture

—

Microarchitecture How does CS 240 work?

Digital Logic
2 2 Dive into foundations of computer hardware.

GOE

Devices (transistors, etc.)

Solid-State Physics

CS 111, 230, 231, 235, 251:

* What can a program do?

CS 240: How do computers work?

=)

. H I bl ? ® O 06 /Users/bpw/courses/cs240/cs240f14 /HelloWorld.java
OW ca n a progra m So Ve a pro em . [New | =1 Open | [¥) save ‘ 5 Clnse‘ [&% Cutl [Is) Copyl] Paste‘ Undo | @ Redo ‘M Find\ ‘Cnmpi\e] Rese!‘ [Run|Test]Javadn:\
(R . public class HelloWorld {
public static void main(String args[1) {
* How do you structure a program? Systenout princLnc Hello, wortdi3;

}

* How do you know it is correct or efficient?
(TN Console | Compiler Output
o HOW hard is it to Solve a problem? Welcome to Drlava. Working directory is /Users/bpw/courses/cs240/cs240f14

> run HelloWorld
Hello, world!

* How is computation expressed?

* What does a program mean?

6:0

A BIG question is missing...

circuitboard image: CC-BY-NC-SA ifixit.com

(CS 111, 230, Algorithm, Data Structure, Application

231, 235, 25

Programming Language

-

Compiler/Interpreter

Software

Operating System

CS 240

Instruction Set Architecture]

Microarchitecture

Digital Logic

Devices (transistors, etc.)

Solid-State Physics

Hardware

Big Idea: Abstraction

with a few recurring subplots

Simple, general interfaces:
— Hide complexity of efficient implementation.
— Make higher-level systems easy to build.
— But they are not perfect.

Os and 1s,
electricity
compilers,

assemblers,
decoders

Representation of data and programs

Translation of data and programs

branches,
procedures,
oS

Control flow within/across programs

Algorithm, Data Structure, Application

Programming Language
Big Idea:
Abstraction

implementation

Layers manage
complexity.

Compiler/Interpreter

Operating System

Instruction Set Architecture

D
e/

Microarchitecture

Digital Logic

Devices (transistors, etc.)

Solid-State Physics

Ada Lovelace writes the
first computer program

s o

I

3, i

n’
orge Boole describes
formal logic for computers
Boolean Algebra

Countess Ava Lovelace, 1840s
George Boole, 1860s

University College Cork, Ireland
Image: public domain

Charles Babbage designs
Analytical Engine

Prototype of Analytical Engine,
(was never actually built),

Science Museum, London
Image: public domain

: data represented as electrical signals

I o oo R

SEET Y |

2098 Cmting

D & A @

machines

ENIAC (EIectronlc Numerlcal Integrator and Computer),

Alan Turing’ 1940s NASA ComPUters’ 1953 First Turing-complete all-electronic programmable digital computer.
Imitation Game, 2014 Hidden Flgures, 2016 University of Pennsylvania, 1940s

Image: public domain

rage: Flikr mark_am_kramer, Imitation Game poster | Image: NASA/JPL/Caltech, Hidden Figures

T e T e e e e

program controls general-purpose hardware I““ ‘ physical control flow
: "P “.":": It A5 -

s
o
- | : -

|

=

oasoss : o

Cossssens ‘ - Y S—

& s a0 - . - ks

- B -~ N
= 1 AP >y S

pas, A SO st

pr nh > oo et AN

- - (e !A’.: &p 3 {
- 43 - - ey : [

ARS
\

Jean Jennings Bartik and Frances Bilas Spence with part of ENIAC.
The programmers of ENIAC were six women.
http://eniacprogrammers.org/, http://sites.temple.edu/topsecretrosies/

Image: public domain

Programming 1940s-style with switches and cables.

Image: public domain

PDP-11 "minicomputers"

Manchester ”Baby" SSEM (Small- Scale Experlmental Machine), replica i '
first stored-program computer -- University of Manchester (UK), 1948 http://simh.trailing-edge.com/ r

Tmage: "SSEM Manchester museum close up" by Parrot of Doom - Own work. Licensed under Creative Commons Attribution-share Alike 3.0 Via https//www.peworld.com/article/249951/if_it_aint_broke_
Wikimedia Commons - http://commons.wikimedia.org/wiki/File:SSEM_Manchester_museum_close_up.jpg dont_fix_it_ancient_computers_in_use_today.htm|?page=2 |

-

1510, 19505 Loots 11570519905 15500 20005 2o a0as

Images:
"Ibm pc 5150 by Ruben de Rijcke - Own work, Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - ikimeda.org/wiki/Flelbm pc 5150.ipg

"IBM PC Motherboard (1981)" by German - Own work. Licensed under Creative Commons Attribution-Share Alke 3.0 via Wikimedia Commons - ikimedi iki PC_| _(1981)jp ; . o
“Macintosh-motherboard by Shieldforyoureyes Dave Fischer - Own work, Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - ikimedia.org/wiki/File:Macintosh-r images: CC-BY-NC-SA ifixit.com

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s
e o
i hm" ’ - ;

ENIAC image: public ° °
1 Modern Computer Organization
L [0 , \
Executes Stores program
N _ instructions. code +data
ENIAC iPhone 3 during execution.
Year 1946 2012
Weight 30 tons 40z
Volume 2,400 ft3 3.4in3 9 Processor) Memory
Cost (UsD, 2014) $6,000,000 $600
Speed few 1000 ops/sec 2,500,000,000 ops/sec
Memory ~100 bytes 1,073,741,824 bytes (1 GB) | Bus |
Power 150,000 W <5W | |
Input/Output Switches, lights, later punchcards Touchscreen, audio, camera, wifi, cell, ... Input/ < USB) Display
Production 1 5,000,000 sold in first 3 days Output <Ne‘“’°”‘ i >

Modern Computer Organization o
- N g Desired computation
Executes Stores program & represented as instructions,
instructions. code +data UO’
during execution. Abs% 7
Loy,
| Processor Memory [Hardware/Software Interface N

Processor repeats:
1. fetch instruction
2. fetch data used by instruction
3. execute instruction on data
4. store result or choose next instruction

Physical implementation
of instructions and resources.

Hardware

Instruction Set Architecture (HW/SW Interface)
Com P uter processor memory
N

Instructions)
+ Names, Encodings - Instruction Encoded
* Effects Logic Instructions
* Arguments, Results

Local storage L

Microarchitecture (/mplementation of ISA) . Names, Size

* How many Large storage
¢ Addresses, Locations

Instruction

Fetch and Registers Memory
Decode

Computer

m 1960s | 1970s |1980s |1990s |2000s |2010s | 2020s 1940s 19605 1970s | 1980s |1990s |2000s |2010s | 2020s

Machine Instructions Assemblers and Assembly Languages

(adds two values and stores the result)

N\

00000010100010101100100000010000 addl %eax, %ecx - 00000010100010101100100000010000

Instruction Set Architecture specification Assembly Language specification

N

machine machine
assembly
code code |—
program
program

program

23 24

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Higher-Level Programming Languages A-0: first compiler, by Grace Hopper

Early 1950s
xoE Y Maybe closer to
‘ assembler/linker/loader

addl %eax, %ecx - 00000010100010101100100000010000
Later: B-O0 = FLOW-MATIC
Programming Language specification - COBOL, late 50s

g high-level assembly machine k -
language Compiler Assembler code |— Hardware Jean Sammet also involved
program e program » headed first sci comp group at Sperry in the '50s
» Later first female president of ACM
| Compile time | | Run time + Mount Holyoke alum, class of 1948

25

More and more layers... CS 240 in 3 acts

(4-5 weeks each)

* Operating systems Hardware implementation

* Virtual machines From transistors to a simple computer
* Hypervisors Hardware-software interface

e \WWeb browsers From instruction set architecture to C
o Abstraction for practical systems

Memory hierarchy
Operating systems
Higher-level languages

| just like to program.
Why study the implementation?

It's fascinating, great for critical thinking.
System design principles apply to software too.

Sometimes system abstractions "leak."
Implementation details affect your programs.

Reliability?

Ariane 5 Rocket, 1996 |

Exploded due to cast of
64-bit floating-point number |
to 16-bit signed number.
Overflow.

"...a Model 787 airplane ... can lose all
alternating current (AC) electrical power ...
caused by a software counter internal to the
GCUs that will overflow after 248 days of
continuous power. We are issuing this AD to
prevent loss of all AC electrical power, which

Boeing 787, 2015

--FAA, April 2015

int #

integer

float #real

int x=..;
xX*x >= 0 ?

40000 * 40000 == 1600000000
50000 * 50000 == -1794967296
float a=.., b=., c=.;

(a+b) +c == a+ (b+c)??
(-2.7e23 + 2.7e23) + 1.0 == 1.0
-2.7e23 + (2.7e23 + 1.0) == 0.0

Arithmetic Performance
x /973 x /1024

Memory Performance

void copyji(int src[2048][2048],
int dst[2048] [2048])

{

int i,3;

void copyij(int src[2048] [2048],
int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++) or (i = 0; i < 2048; i++)
for (1 = 0; i < 2048; i++) for (j = 0; j < 2048; j++)

dst[i] [J] = src[i][]];

dst[i] [J] = src[il[]jl;

}

could result in loss of control of the airplane."

several times faster
due to hardware caches
32

Security

”

The GHOST vulnerability is a buffer overflow condition that can be easily exploited lo¢ #OMEPAGE | MYTIMES | TODAYS PAPER | VIDED | MOSTPOPULAR | TIMES TOPICS

DETECTING GHOST

VULNERABILITY

remotely, which makes it extremely dangerous. This vulnerability is named after the GetHOS' | Elye New ok Times "
Business
function involved in the exploit.

WORLD | US. NY./REGION BUSINESS THCHNOLOGY SCIENCE HEALTH SPORTS OPINION

MEDIA & ADVERTISING WORLD BUSINESS SMALLBUSINESS YOURMONEY DEALBOOK MARKETS RE

All computers are flawed -- and the fix will
take years

by

‘Q S&P DOW JONES
INDICES

unmatchedinnovation

6. 2018 1207 PMET

A Heart Device Is Found Vulnerable to Hacker Attacks
o) BARNABY . FEDER
e e 2 w TwiTTER
Me ltd own a nd O To the long list of objects vulnerable to attack by computer hackers, [ke
add the human heart. B siGNINTO

Spectre

EhnLoRsive
The threat soems largely theoretical. But a team of computer security | —
researchers plans to report Wednesday that it had been able togain = ™"
wireless access to a heart and pacemaker, & REPRWTS

https://cs.wellesley.edu/~cs240/

Everything is here.

Please read it.

Why take CS 240?

Learn how computers execute programs.

Build software tools and appreciate the value of those you use.
Deepen your appreciation of abstraction.

Learn enduring system design principles.
Improve your critical thinking skills.
Become a better programmer:

— Think rigorously about execution models.

— Program carefully, defensively.
Debug and reason about programs effectively.
Identify limits and impacts of abstractions and representations.
— Learn to use software development tools.
Foundations for:

— Compilers, security, computer architecture, operating systemes, ...
Have fun and feel accomplished!

