
Dynamic Memory Allocation in the Heap
(malloc and free)

Explicit allocators (a.k.a. manual memory management)

Addr Perm Contents Managed by Initialized

2N-1 Stack RW Procedure context Compiler Run-time

Heap RW Dynamic
data structures

Programmer,
malloc/free,

new/GC
Run-time

Statics RW Global variables/
static data structures

Compiler/
Assembler/Linker Startup

Literals R String literals Compiler/
Assembler/Linker Startup

Text X Instructions Compiler/
Assembler/Linker Startup

0

Heap Allocation

Allocator Basics
Pages too coarse-grained for allocating individual objects.
Instead: flexible-sized, word-aligned blocks.

void* malloc(size_t size);

void free(void* ptr);

3

number of contiguous bytes required
pointer to newly allocated block
of at least that size

pointer to allocated block to free

Allocated block
(4 words)

Free block
(3 words)

Free word

Allocated word

Example (64-bit words)

4

p1 = malloc(32);

p2 = malloc(40);

p3 = malloc(48);

free(p2);

p4 = malloc(16);

Allocator Goals: malloc/free
1. Programmer does not decide locations of distinct objects.

Programmer decides: what size, when needed, when no longer needed

2. Fast allocation.
mallocs/second or bytes malloc'd/second

3. High memory utilization.
Most of heap contains necessary program data.
Little wasted space.

Enemy: fragmentation – unused memory that cannot be allocated.

Internal Fragmentation
payload smaller than block

Causes
metadata
alignment
policy decisions

6

payload

block

Internal
fragmentation

External Fragmentation (64-bit words)

Total free space large enough,
but no contiguous free block large enough

Depends on the pattern of future requests.

7

p1 = malloc(32);

p2 = malloc(40);

p3 = malloc(48);

free(p2);

p4 = malloc(48);

Implementation Issues
1. Determine how much to free given just a pointer.

2. Keep track of free blocks.

3. Pick a block to allocate.

4. Choose what do with extra space when allocating a structure
that is smaller than the free block used.

5. Make a freed block available for future reuse.

8

Knowing How Much to Free
Keep length of block in header word preceding block

9

free(p0);

p0 = malloc(32);

p0

block size metadata data payload

48

Takes extra space!

Keeping Track of Free Blocks

Method 1: Implicit list of all blocks using length

Method 2: Explicit list of free blocks using pointers

Method 3: Seglist
Different free lists for different size blocks

More methods that we will skip…

10

40 32 1648

40 32 1648

Implicit Free List: Block Format

11

block size

1 word

payload
(application data,
when allocated)

a

optional padding

16-byte aligned sizes have
4 zeroes in low-order bits

00000000
00010000
00100000
00110000
…

Steal LSB for status flag.
LSB = 1: allocated
LSB = 0: free

Block metadata:
1. Block size
2. Allocation status

Store in one header word.

Implicit Free List: Heap Layout

12

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word wasted

Start of heap

Payloads start at 16-byte (2-word) alignment.
Blocks sizes are multiples of 16 bytes.

Block Header (metadata)
block size | block allocated?

Special end-heap word
Looks like header of
zero-size allocate block.

Initial word can't
be part of block.

May force
internal fragmentation.

Implicit Free List: Finding a Free Block
First fit:

Search list from beginning, choose first free block that fits

Next fit:
Do first-fit starting where previous search finished

Best fit:
Search the list, choose the best free block: fits, with fewest bytes left over

13

16

Implicit Free List: Allocating a Free Block

14

16 1648

16 1632

p = malloc(24);

p

Now showing allocation status flag implicitly with shading.

Block Splitting

Allocated space ≤ free space.
Use it all? Split it up?

Implicit Free List: Freeing a Block

15

16 1632 16

p

malloc(40);

16 1632 16

External fragmentation!
Enough space, not one block.

Clear allocated flag.free(p);

Coalescing Free Blocks

16

32 1632 16

free(p)

32 1648 16

logically gone

p

Coalesce with following free block.

Coalesce with preceding free block?

Bidirectional Coalescing: Boundary Tags

17

Boundary tag
(footer)

32 32 32 32 48 3248 32

Header block size

payload
(application data,
when allocated)

a

optional padding

block size a

[Knuth73]

Constant-Time Coalescing: 4 cases

19

m1 1

m1 1
n 1

Freed Block
n 1

m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

m1 1

m1 1
n+m2 0

n+m2 0

m1 1

m1 1
n 1

Freed Block
n 1

m2 0

m2 0

m1 0

m1 0
n 1

Freed Block
n 1

m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

m1 0

m1 0
n 1

Freed Block
n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Summary: Implicit Free Lists
Implementation: simple

Allocate: O(blocks in heap)
Free: O(1)

Memory utilization: depends on placement policy

Not widely used in practice
some special purpose applications

Splitting, boundary tags, coalescing are general to all allocators.

20

Explicit Free Lists

Explicit list of free blocks rather than implicit list of all blocks.

21

Free block:Allocated block:

(same as implicit free list)

block size

payload
(application data,
when allocated)

a

optional padding

block size a

block size a
next pointer

prev pointer

block size a

Explicit Free Lists: List vs. Memory Order
Abstractly: doubly-linked lists

Concretely: free list blocks in any memory order

22

A B C

32 32 32 32 4848 3232 32 32

Next

Previous

A B

C

Previous

Next

List Order ≠ Memory Order

Explicit Free Lists: Allocating a Free Block

23

Before

After

= malloc(…)

(with splitting)

Explicit Free Lists: Freeing a Block
Insertion policy: Where in the free list do you add a freed block?

LIFO (last-in-first-out) policy
Pro: simple and constant time
Con: studies suggest fragmentation is worse than address ordered

Address-ordered policy
Con: linear-time search to insert freed blocks
Pro: studies suggest fragmentation is lower than LIFO

LIFO Example: 4 cases of freed block neighbor status.

25

Freeing with LIFO Policy:
between allocated blocks

Insert the freed block at head of free list.

26

free()

Head

Head

Before

After

Freeing with LIFO Policy:
between free and allocated

Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the head of the free list.

27

free()

Head

Head

Before

After

Could be on either or both sides...

Freeing with LIFO Policy:
between allocated and free

Splice out successor block, coalesce both memory blocks and
insert the new block at the head of the free list.

28

free()

Head

Head

Before

After

Freeing with LIFO Policy:
between free blocks

Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the head of the list.

29

free()

Head

Head

Before

After

Summary: Explicit Free Lists
Implementation: fairly simple

Allocate: O(free blocks) vs. O(all blocks)
Free: O(1) vs. O(1)

Memory utilization:
depends on placement policy
larger minimum block size (next/prev) vs. implicit list

Used widely in practice, often with more optimizations.

Splitting, boundary tags, coalescing are general to all allocators.

36

Seglist Allocators
Each size bracket has its own free list

Faster best-fit allocation...

38

32

48-64

80-inf

16

Summary: Allocator Policies
All policies offer trade-offs in fragmentation and throughput.

Placement policy:
First-fit, next-fit, best-fit, etc.
Seglists approximate best-fit in low time

Splitting policy:
Always? Sometimes? Size bound?

Coalescing policy:
Immediate vs. deferred

41

Remembrallocator Block Format

42

Free block:Allocated block:
block size

payload

1p block size a
next pointer

prev pointer

block size

0p

payload

block size a
next pointer

prev pointer

block size

01

block size

payload

10

block size

payload

11Minimum block size?
- Implicit free list
- Explicit free list

Update 2 headers on each malloc/free.

