Dynamic Memory Allocation in the Heap
(malloc and free)

Explicit allocators (a.k.a. manual memory management)

Heap Allocation

Addr
2N-1 4

Stack|
v

_,1

Heap

Statics

Literals

Text

Perm Contents Managed by Initialized
RW Procedure context Compiler Run-time
Dvnamic Programmer,
RW y malloc/free, Run-time
data structures
new/GC
Global variables/ Compiler/
RW Startu
static data structures Assembler/Linker P
. . Compiler/
R String literals Startu
8 Assembler/Linker P
C il
X Instructions SfElEL Startup

Assembler/Linker

Allocator Basics

Pages too coarse-grained for allocating individual objects.
Instead: flexible-sized, word-aligned blocks.

Free word
\ J \ J
¥ Allocated word
Allocated block Free block
(4 words) (3 words)

pointer to newly allocated block
of at least that size number of contiguous bytes required

¥ ¥

void* malloc(size t size);
/ pointer to allocated block to free

void free (void* ptr);

Exam pIe (64-bit words)

pl = malloc(32);

p2 = malloc(40);

p3 malloc (48) ;

free (p2) ;

p4 = malloc(16);

Allocator Goals: malloc/free

1. Programmer does not decide locations of distinct objects.

Programmer decides: what size, when needed, when no longer needed

2. Fast allocation.

mallocs/second or bytes malloc'd/second

3. High memory utilization.

Most of heap contains necessary program data.

Little wasted space.

Enemy: fragmentation — unused memory that cannot be allocated.

Internal Fragmentation

payload smaller than block

block
I N

payload

fragmentation

Causes
metadata
alignment
policy decisions

External Fragmentation (64-bit words)

Total free space large enough,
but no contiguous free block large enough

pl = malloc(32);
p2 = malloc(40) ;
p3 = malloc(48);
free (p2) ;

p4 = malloc(48);

Depends on the pattern of future requests.

Implementation Issues

1. Determine how much to free given just a pointer.
2. Keep track of free blocks.
3. Pick a block to allocate.

4. Choose what do with extra space when allocating a structure
that is smaller than the free block used.

5. Make a freed block available for future reuse.

Knowing How Much to Free

Keep length of block in header word preceding block
\

Takes extra space!

pO

1

pO0 = malloc(32); 48

N

block size metadata data payload

free (p0) ;

Keeping Track of Free Blocks

Method 1: Implicit list of all blocks using length

— oy,
- —
-~y

Method 2: Explicit list of free blocks using pointers

.

40| o 32 48 16

Method 3: Seglist
Different free lists for different size blocks

More methods that we will skip...

Implicit Free List: Block Format

Block metadata:

1. Block size

2. Allocation status
Store in one header word.

1 word
— — — Steal LSB for status flag.
block size | a l«— LSB = 1: allocated
LSB = 0O: free
payload
(application data,
when allocated)
optional padding
v

16-byte aligned sizes have
4 zeroes in low-order bits
00000000
00010000
00100000
00110000

Implicit Free List: Heap Layout

Block Header (metadata)

Special end-heap word
Looks like header of

Start of heap block size | block allocated? zero-size allocate block.
16]0 32|1 640 32|1 0|1
\ May force
Initial word can't Free word

internal fragmentation.

be part of block. /

Payloads start at 16-byte (2-word) alignment.
Blocks sizes are multiples of 16 bytes.

Allocated word

Allocated word wasted

Implicit Free List: Finding a Free Block

First fit:
Search list from beginning, choose first free block that fits

Next fit:
Do first-fit starting where previous search finished

Best fit:
Search the list, choose the best free block: fits, with fewest bytes left over

Implicit Free List: Allocating a Free Block

N\ — T

16 48 16

p = malloc (24) ; Allocated space S free space.
Use it all? Split it up?

N

N\ NN

16 32 16 16

1
P

Block Splitting

Now showing allocation status flag implicitly with shading.

Implicit Free List: Freeing a Block

/N NN

16 32 16 16

1
P

free (p) ; Clear allocated flag.

N

16 32 16 16

|

ion!
malloc (40) ; 83 External fragmentation!

Enough space, not one block.

Coalescing Free Blocks
T N NN

32 32 16 16

1
| &

free (p) Coalesce with following free block.

///"—“\\gz;,,—”—___“~\\\‘

32 48 16

\ logically gone

Coalesce with preceding free block?

[Knuth73]

Bidirectional Coalescing: Boundary Tags

Header —— block size a

payload
(application data,
when allocated)

optional padding

Boundary tag

(footer) block size a

PN N

32 32 (32 32 (48 48 | 32 32

\/\/\/

Constant-Time Coalescing: 4 cases

ml

ml

ml

ml

n+m?2

m2

m2

n+ml

n+m?2

n+ml+m?2

n+ml

m2

ml 1

ml 1

n 1
Freed Block

n 1

m2 1

m2 1

ml 0

ml 0

n 1
Freed Block

n 1

m2 1

m2 1

m2

ml 1
ml 1
n 1
Freed Block
n 1
m2 0
m2 0
ml 0
ml 0
n 1
Freed Block
n 1
m2 0
m2 0

n+ml+m?2

Summary: Implicit Free Lists

Implementation: simple

Allocate: O(blocks in heap)
Free:

Memory utilization: depends on placement policy

Not widely used in practice
some special purpose applications

Splitting, boundary tags, coalescing are general to all allocators.

Explicit Free Lists

Allocated block: Free block:
block size a block size a
next pointer
payload

rev pointer
(application data, e

when allocated)

optional padding

block size a block size a

(same as implicit free list)

Explicit list of free blocks rather than implicit list of al/l blocks.

Explicit Free Lists: List vs. Memory Order

Abstractly: doubly-linked lists

Next
S — A S " B < . C

Previous

Concretely: free list blocks in any memory order

32

A c —

Previous

List Order # Memory Order

22

Explicit Free Lists: Allocating a Free Block

Before
f ﬁ
®
After (with splitting)

=

= malloc(..)

23

Explicit Free Lists: Freeing a Block

Insertion policy: Where in the free list do you add a freed block?

LIFO (last-in-first-out) policy
Pro: simple and constant time

Con: studies suggest fragmentation is worse than address ordered
Address-ordered policy

Con: linear-time search to insert freed blocks

Pro: studies suggest fragmentation is lower than LIFO

LIFO Example: 4 cases of freed block neighbor status.

Freeing with LIFO Policy:
between allocated blocks

f::;;’»

Before

Head

Insert the freed block at head of free list.

After

26

Freeing with LIFO Policy:
between free and allocated

s
it

Before

_Io

Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the head of the free list.

After

Head H

il

Could be on either or both sides...

Freeing with LIFO Policy:
between allocated and free

Before

/1

_Io

Splice out successor block, coalesce both memory blocks and
insert the new block at the head of the free list.

g

After

a1
3

28

Freeing with LIFO Policy:
between free blocks

Before

Head

I T
®

Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the head of the list.

After

Head H

29

Summary: Explicit Free Lists

Implementation: fairly simple

Allocate: 0] blocks) vs. O(all blocks)
Free: 0O(1) vs. O(1)

Memory utilization:
depends on placement policy
larger minimum block size (next/prev) vs. implicit list

Used widely in practice, often with more optimizations.

Splitting, boundary tags, coalescing are general to all allocators.

Seglist Allocators

Each size bracket has its own free list

16 — — — —

32 —> — —

48-64 — —

80-inf

Faster best-fit allocation...

Summary: Allocator Policies

All policies offer trade-offs in fragmentation and throughput.

Placement policy:
First-fit, next-fit, best-fit, etc.
Seglists approximate best-fit in low time

Splitting policy:

Always? Sometimes? Size bound?

Coalescing policy:
Immediate vs. deferred

Remembrallocator Block Format sayload

Allocated block: Free block:

block size |1|0

block size |p|1 block size |p|0

next pointer

next pointer

prev pointer

prev pointer

payload

block size

block size
block size |0

payload

block size |1

Minimum block size?

- Implicit free list
- Explicit free list

Update 2 headers on each malloc/free.
payload

