Operating Systems, a 240 view barely scraping the surface

Key abstractions provided by kernel

process virtual memory

Virtualization mechanisms and hardware support:

context-switching exceptional control flow address translation, paging, TLBs

Processes

Program = code (static)

Process = a running program instance (dynamic)

code + state (contents of registers, memory, other resources)

Next Weeks

Key illusions:

Logical control flow

Each process seems to have exclusive use of the CPU

Private address space

Each process seems to have exclusive use of full memory

Why? How?

Implementing logical control flow

Abstraction: every process has full control over the CPU

Implementation: time-sharing

Context Switching

Kernel (shared OS code) switches between processes

Control flow passes between processes via context switch. Context =

fork

```
pid t fork()
```

- Clone current parent process to create identical* child process, including all state (memory, registers, program counter, ...).
- 2. Continue executing both copies with *one difference:*
 - returns 0 to the child process
 - returns child's process ID (pid) to the parent process

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

fork is unique: called in one process, returns in two processes!

(once in parent, once in child)

*almost. See man 3 fork for exceptions

9

fork again

Parent and child continue from *private* copies of same state.

Memory contents (**code**, globals, **heap**, **stack**, etc.), Register contents, **program counter**, file descriptors...

Only difference: return value from fork ()

Relative execution order of parent/child after fork () undefined

```
void fork1() {
  int x = 1;
  pid_t pid = fork();
  if (pid == 0) {
    printf("Child has x = %d\n", ++x);
  } else {
    printf("Parent has x = %d\n", --x);
  }
  printf("Bye from process %d with x = %d\n", getpid(), x);
}
```

Creating a new process with **fork**

Process n

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

Child Process m

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

```
pid_t pid = fork();
if (pid == 0) {
   printf("hello from child\n");
} else {
   printf("hello from parent\n");
}
```

hello from parent

Which prints first?

hello from child

Т

fork-exec

```
fork() clone current process

execv() replace process code and context (registers, memory)
with a fresh program.

See man 3 execv, man 2 execve
```

```
// Example arguments: path="/usr/bin/ls",
// argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL
void fork_exec(char* path, char* argv[]) {
    pid_t pid = fork();
    if (pid != 0) {
        printf("Parent: created a child %d\n", pid);
    } else {
        printf("Child: exec-ing new program now\n");
        execv(path, argv);
    }
    printf("This line printed by parent only!\n");
}
```


wait for child processes to terminate

pid_t waitpid(pid_t pid, int* stat, int ops)

Suspend current process (i.e. parent) until child with pid ends.

On success:

Return **pid** when child terminates.

Reap child.

If stat != NULL, waitpid saves termination reason where it points.

See also: man 3 waitpid

```
waitpid example
                                                CTBve
void fork wait() {
  int child status;
 pid t child pid == fork();
  if (child pid == 0) {
    printf("HC: hello from child\n");
    if (-1 == waitpid(child pid, &child status, 0) {
      perror("waitpid");
      exit(1);
    printf("CT: child %d has terminated\n",
           child pid);
  printf("Bye\n");
  exit(0);
}
                                                       18
```

HCBve

16