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Latches, Flip-flops,
Registers, Memory

Sequential logic: elements to store values
Output depends on inputs and stored values.

(vs. combinational logic: output depends only on inputs)



Processor: Data Path Components

Instruction

Fetch and Registers
Decode




Bistable latches

Suppose we somehow get a1l (or a 0?) on here.
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D latch
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if C=0, then SR latch stores current value of Q.

if C=1, then D flows to Q:
ifD=0,thenR=1andS=0,Q=0
ifD=1,thenR=0andS$=1,Q=1



Time matters!
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Assume Q has an initial state of O




Clocks

Clock: free-running signal
with fixed cycle time = clock period =T.

Clock frequency = 1 / clock period
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Falling edge

A clock controls when to update
a sequential logic element's state.




Synchronous systems

Inputs to state elements must be valid on active clock edge.

State State
element Combinational logic element
1 2




D fllp-flop with falling-edge trigger
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Can still read Q,,,,, Q,ext bECOMES Q1010

Clock N — folower stores E as Q
leader stores D as




Time matters!
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Assume Q and E have an initial state of O



Reading and writing in the same cycle

Clock
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Assume Qis initially O.



D flip-flop = one bit of storage
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*Half a byte!‘

A 1-nybble* register

(a 4-bit hardware storage cell)
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Register file

«s| Read register
r selector 1
: Read register Read data 1 ﬁ\»
r selector 2 Read ports
W . Read data 2 > Why 2?
rite register w

r selector

—\;\*/a Write data

Write port Write?
T 0 = read
1 = write r = log, number of registers

w = bits in word

Array of registers, with register selectors, write/read control,
input port for writing data, output ports for reading data.



Read register
number 1

Read ports
(data out)

Read register
number 2
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— Read data 1

—» Read data 2




Write port (data in)
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RAM (Random Access Memory)
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Data In

—+— Address

A x B RAM
Write
1| Enable

Data Out

T

Similar to register file, except...
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