Latch: CC-BY Rberteig@flickr

2
<

Latches, Flip-flops,
Registers, Memory

Sequential logic: elements to store values
Output depends on inputs and stored values.

(vs. combinational logic: output depends only on inputs)

Processor: Data Path Components

Instruction

Fetch and Registers
Decode

Bistable latches

Suppose we somehow get a1l (or a 0?) on here.

S R QQ']Qstable) Q' (stable)

O 0 01 0

SR latch

O 01 0 1

D latch

D—te 1 A
Data bit | :

L L qQ
C——L 5 :
Clock - ____ |

if C=0, then SR latch stores current value of Q.

if C=1, then D flows to Q:
ifD=0,thenR=1andS=0,Q=0
ifD=1,thenR=0andS$=1,Q=1

Time matters!

> _/
C / \

\

Q

Assume Q has an initial state of O

Clocks

Clock: free-running signal
with fixed cycle time = clock period =T.

Clock frequency = 1 / clock period

/
NN -

Rising edge
Clock period °

Falling edge

A clock controls when to update
a sequential logic element's state.

Synchronous systems

Inputs to state elements must be valid on active clock edge.

State State
element Combinational logic element
1 2

D fllp-flop with falling-edge trigger

D DL QL DF QF Q
D latch D latch

Can still read Q,,,,, Q,ext bECOMES Q1010

Clock N — folower stores E as Q
leader stores D as

Time matters!

0 _/ __/ \
c_/ N S

E

Q

Assume Q and E have an initial state of O

Reading and writing in the same cycle

Clock

D Q
D Flip-Flop

> C Q

T

Assume Qis initially O.

D flip-flop = one bit of storage

1 —>D Q—

D Flip-Flop
— P> C Q

*Half a byte!‘

A 1-nybble* register

(a 4-bit hardware storage cell)

0 —sID Qr——
D Flip-Flop
> C Q
1 ——> D QpF——
D Flip-Flop
> C Q
0 ——> D QpFb——
D Flip-Flop
> C Q
1 ——fbD QF——
Write - ([:)Fllp FIopa

v

Clock |

Register file

«s| Read register
r selector 1
: Read register Read data 1 ﬁ\»
r selector 2 Read ports
W . Read data 2 > Why 2?
rite register w

r selector

—\;*/a Write data

Write port Write?
T 0 = read
1 = write r = log, number of registers

w = bits in word

Array of registers, with register selectors, write/read control,
input port for writing data, output ports for reading data.

Read register
number 1

Read ports
(data out)

Read register
number 2

Register 0

Register 1

Register n—2

Register n—1

1

— Read data 1

—» Read data 2

Write port (data in)

write control __:>
clock —

register number

incoming data

Y

—h

n-to-2n
decoder

n-2

n-—1

Register 0

Reqister 1

C

Register n—2

C

Register n—1

RAM (Random Access Memory)

¥

Data In

—+— Address

A x B RAM
Write
1| Enable

Data Out

T

Similar to register file, except...

16 x 4 RAM

4-bit
address
1101 —>

4to 16
decoder

data
out

20

