
Higher Memory
Addresses

Lower Memory
Addresses

STACK DIAGRAM

REGISTERS DIAGRAM

%RAX %RBP

Return Value (caller-saved) (callee-saved)

%RDI %R10
1st argument (caller-saved) (caller-saved)

%RSI %R11
2nd argument (caller-saved) (caller-saved)

%RDX %R12
3rd argument (caller-saved) (callee-saved)

%RCX %R13
4th argument (caller-saved) (callee-saved)

%R8 %R14
5th argument (caller-saved) (callee-saved)

%R9 %R15
6th argument (caller-saved) (callee-saved)

%RBX
Callee-saved

SPECIAL REGISTERS

%RSP %RIP

Address of stack “top” addr. of next instruction
(lowest stack address) (in text section)

COMMON INSTRUCTIONS

mov a, b – copy a into b
movs a, b – store sign-extended a into b
movz a, b – store zero-extended a into b
lea a, b – store address of memory

addressing expression a in b
push a – push a onto stack
pop a – pop a value from the top of the

stack into a
call target - push return address onto the

stack and jump to target
label/address

ret – pop return address from stack and
jump there

add a, b – store sum a+b into b
sub a, b – store difference b-a into b
imul a, b – store signed product a*b into b
and a, b – store bitwise AND a&b into b
or a, b – store bitwise OR a|b into b
shl/sal a, b – store left shift b<<a into b
shr a, b - store logical right shift b<<a into

b
sar a, b – store arithmetic right shift b<<a

into b
cmp a, b – set condition codes based on

difference b-a
test a, b – set condition codes based on

bitwise AND a&b
jg – jump if greater than (zero)
je – jump if equal to (zero)
jne – jump if not equal to (zero)
jle – jump if less than or equal to (zero)
jmp target – jump to target

MEMORY ADDRESS SYNTAX

D(Rb, Ri, S) => Mem[Reg[Rb] + S*Reg[Ri] + D]
S can only be 1, 2, 4, or 8

Remember that lea calculates an address but
does not access the address.

