Explore Processes in a Running System

In the terminal, enter the commands shown at the command line.

Run the top command to visualize the currently executing processes and the resources they consume:

 $ top

Examine the output, which looks something like this.

```
[...]
Tasks: 689 total, 1 running, 663 sleeping, 21 stopped, 4 zombie
%CPU(s): 0.2 us, 0.2 sy, 0.0 ni, 99.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 32776712 total, 5862824 free, 3687128 used, 24839388 buff/cache
KiB Swap: 2097148 total, 416988 free, 1688168 used, 27583924 avail Mem
```

This is all the processes running on the server, with the status of each being updated periodically.

Notice that many different users are active, and also notice that your own process, running `top`, is shown.

Read the **Tasks**: line at the beginning of the output, interpreting “Tasks” as “processes”.

1. How many processes are running? Sleeping? Stopped? Zombie?

Read the **%CPU(s)**: line, which shows the percentage of the time that the CPU is spending executing user and operating system kernel code, vs. being idle (and a few other categories we will ignore). These levels probably fluctuate at each sample that `top` displays.
Also displayed are a list of processes ranked by the percentage of CPU time they have used in the most recent time window.

2. Which processes are using the most CPU time? About how much?

Enter <Ctrl> C to terminate the top command.

Run the ps command:

 $ ps

By default, it lists only the processes run under your current login session. (Each terminal window you open actually creates a new login session and runs a shell in it.)

You should see something like this:

```
23314 pts/1   00:00:00 bash
30086 pts/1   00:00:00 ps
```

Run ps ux to see the list of all processes belonging to you:

 $ ps ux

3. How many have used at least 1 second of CPU time? (see the TIME column, in minutes:seconds form)

Run ps aux to see the list of all processes run by all users on this machine:

 $ ps aux

List the contents of the /proc filesystem:

 $ ls /proc

NOTE: The /proc filesystem is provided by the Linux kernel as an interface to inspect information about process scheduling, individual processes, and other operating system status information

You will see something like this, which is a list of subdirectories:

```
1   12327 171   217   248   29   315   3518  47   8512
10  12328 172   218  24801 290  3152  3519  48   86
100 124   173   219   249  29040 316  352   483  87
101 125   174   22  24946 291 31654 3520  49   88
```

The /proc filesystem has a subdirectory with information about each living process. Each directory is named with the associated PID (Proccess ID) of a process that is currently running.
Examine the interrupts file:

$ cat /proc/interrupts

A column is listed for each of the CPUs in the server.

4. How many CPUs are there?

5. How many interrupts have occurred for scheduling (context-switching)? How many for system calls (traps, labelled “Function Call”)?

Find the PID (Process ID) of python by using top:

$ top

and finding python and its listed PID (there may be more than one occurrence, just choose the first one).

Change into that directory (for example, if the PID of python is xxxx):

$ cd /proc/xxxx (you must replace the xxxx with the PID for a python process)

Inspect its status information by showing the contents of the status file:

$ cat status

6. How many context switches has python experienced? (Look for voluntary and nonvoluntary ctxt switches)

7. How many child processes has python created? (See the “task” subdirectory or run the pstree -p command to see the hierarchy of process ancestry.)