Assignment for Laboratory 12 Processes Computer Science 240

Explore Processes in a Running System

In the terminal, enter the commands shown at the command line.

Run the top command to visualize the currently executing processes and the resources they consume:

\$ top

Examine the output. which looks something like this.

[top -	09:34:46	up :	37 da	ys, 11:1	18, 2 u	sers,	100	d ave	rage:	0.07, 0.0	7, 0.10
Tasks: 689 total, 1 running, 653 sleeping, 21 stopped, 4 zombie											
NCpu(s	s): 0.2 u	s,	0.2	sy, 0.6	9 ni, 99	.5 id,	Θ.	0 wa,	0.0) hi, 0.0	si, 0.0 st
KiB M	en : 32776	712	tota	1, 5056	9284 fre	e, 368	3712	8 use	d, 24	039380 but	f/cache
KiB S	Nap: 2097	148	tota	1, 416	980 fre	e, 168	916	8 use	d. 27	583824 ava	il Mem
PID	USER	PR	NI	VIRT	RES	SHR	S 1	NCPU	WHEN	TIME+	COMMAND
12629	welp304+	20	9	466896	27524	6544	S	2.0	0.1	0:17.02	python
13709	jherbst	20	0	162668	2876	1592	R	1.6	0.0	0:01.59	top
1	root	28	9	203112	5876	2464	s	0.3	0.0	61:27.07	systemd
1342	ak184	28	9	1878588	4944	8	s	0.3	0.0	1:18.54	cpptools-s+
1472	root	28	9	0	8	8	s	0.3	0.0	3:01.11	nfsd
1887	vq1	20	9	1878516	100	8	s	0.3	0.0	1:49.63	cpptools-s+
2517	mongod	20	9	1555900	5784	2932	s	0.3	0.0	156:28.55	mongod
10578	vq1	28	9	2489316	224	8	s	0.3	0.0	9:42.67	cpptools
10703	ak184	28	9	2423788	868	64	s	0.3	0.0	4:07.63	opptools
11165	root	20		0	0		•	0.2	0.0	0.00.00	kenrker (uE+

This is all the processes running on the server, with the status of each being updated periodically.

Notice that many different users are active, and also notice that your own process, running **top**, is shown.

Read the Tasks: line at the beginning of the output, interpreting "Tasks" as "processes".

1.How many processes are running? Sleeping? Stopped? Zombie?

Read the **%CPU(s)**: line, which shows the percentage of the time that the CPU is spending executing user and operating system kernel code, vs. being idle (and a few other categories we will ignore). These levels probably fluctuate at each sample that *top* displays.

Also displayed are a list of processes ranked by the percentage of CPU time they have used in the most recent time window.

2. Which processes are using the most CPU time? About how much?

Enter <CtrL> C to terminate the **top** command.

Run the **ps** command:

\$ ps

By default, it lists only the processes run under your current login session. (Each terminal window you open actually creates a new login session and runs a shell in it.)

You should see something like this:

23314 pts/1 00:00:00 bas**h** 30086 pts/1 00:00:00 ps

Run **ps ux** to see the list of all processes belonging to you:

\$ ps ux

3. How many have used at least 1 second of CPU time? (see the TIME column, in minutes: seconds form)

Run **ps aux** to see the list of all processes run by all users on this machine:

\$ ps aux

List the contents of the /proc filesystem:

\$ Is /proc

NOTE: The /proc filesystem is provided by the Linux kernel as an interface to inspect information about process scheduling, individual processes, and other operating system status information

You will see something like this, which is a list of subdirectories:

1	12327	171	217	248	29	315	3518	47	8512
10	12328	172	218	24801	290	3152	3519	48	86
100	124	173	219	249	29040	316	352	483	87
101	125	174	22	24946	291	31654	3520	49	88

The /proc filesystem has a subdirectory with information about each living process. Each directory is named with the associated PID (Proccess ID) of a process that is currently running.

Examine the interrupts file:

\$ cat /proc/interrupts

A column is listed for each of the CPUs in the server.

4. How many CPUS's are there?

5. How many interrupts have occurred for scheduling (context-switching)? How many for system calls (traps, labelled "Function Call")?

Find the PID (Process ID) of *python* by using *top*:

\$ top

and finding *python* and its listed PID (there may be more than one occurrence, just choose the first one)..

Change into that directory (for example, if the PID of *python* is xxxx):

\$ cd /proc/xxxx (you must replace the **xxxx** with the PID for a python process)

Inspect its status information by showing the contents of the status file:

\$ cat status

6. How many context switches has *python* experienced? (Look for voluntary and nonvoluntary ctxt switches)

7. How many child processes has *python* created? (See the "task" subdirectory or run the pstree -p command to see the hierarchy of process ancestry.)