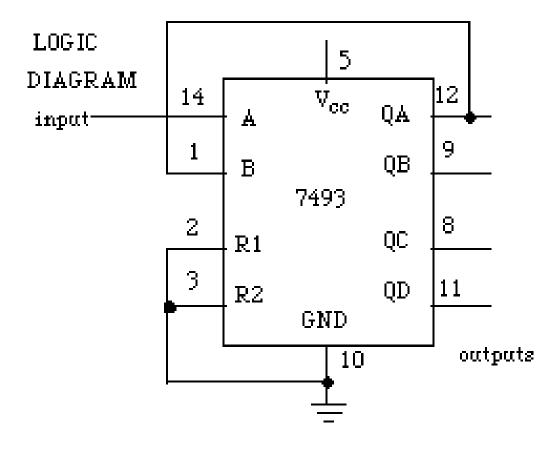
CS 240 Lab 2 More Digital Logic and Combinational Circuits

- Binary and Hex Numbers/Binary Counter
- Multiplexer
- Decoder
- Adder

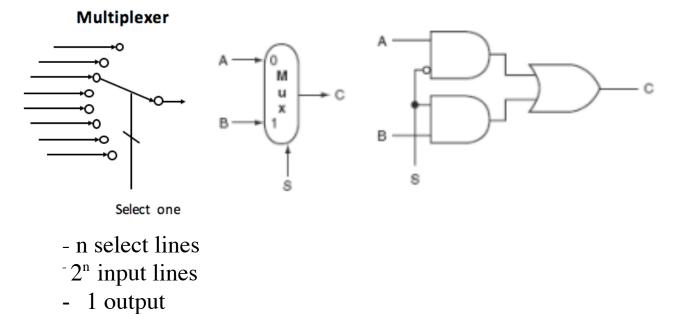
Binary and Hexadecimal Numbers

Hex		Bin	ary	
	QD	QC	QB	QA
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
2 3 4 5 6	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8 9	1	0	0	0
9	1	0	0	1
А	1	0	1	0
В	1	0	1	1
С	1	1	0	0
D	1	1	0	1
E	1	1	1	0
F	1	1	1	1


Hex can be converted to binary and vice versa by grouping into 4 bits.

 $11110101_2 = F5_{16} \qquad 37_{16} = 00110111_2$

Binary Counter


NOTE: logic diagram is not the same as pinouts! Shows information about the logical operation of the device.

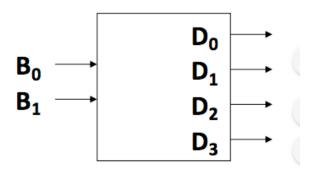
- Inputs on left side of diagram
- Outputs on right
- Voltage shown on top
- Ground shown on bottom

Multiplexer

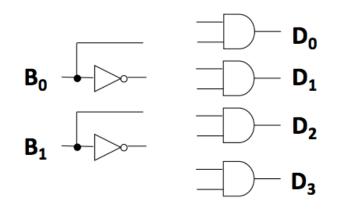
A multiplexer can be thought of as a **steering circuit**, which steers a single input from a set of inputs through to the output, based on the select line.

One of the possible 2^n inputs is chosen by the n select lines, and gated through to the output of a multiplexer. The truth table for an 8x1 MUX is:

<u>S2</u>	S1	S0	Q
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7


Decoder

A decoder translates an binary number input to the select lines, and asserts the corresponding numbered output.


- n input/select lines
- 2^n outputs

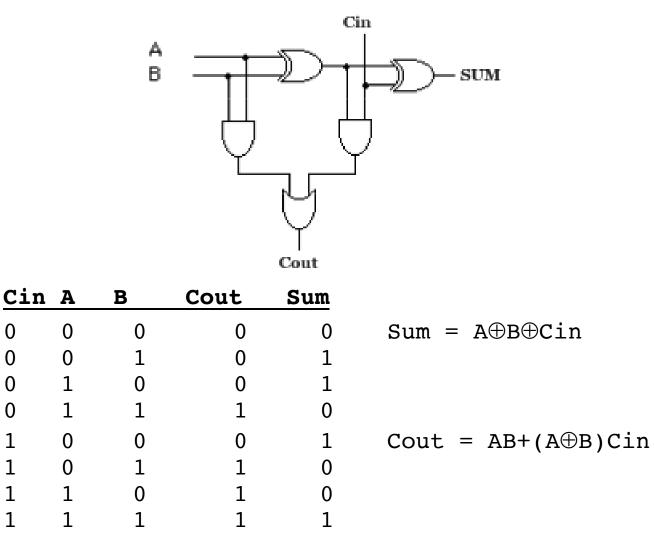
- only one of the outputs is active at any given time, based on the value of the n select lines.

2x4 Decoder

Built with code detectors:

Truth table for an 3x8 decoder

<u>S2</u>	S1	S0		Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	Ι	1	0	0	0	0	0	0	0
0	0	1	Ι	0	1	0	0	0	0	0	0
0	1	0	I	0	0	1	0	0	0	0	0
0	1	1	I	0	0	0	1	0	0	0	0
1	0	0	I	0	0	0	0	1	0	0	0
1	0	1	I	0	0	0	0	0	1	0	0
1	1	0	I	0	0	0	0	0	0	1	0
1	1	1	Ι	0	0	0	0	0	0	0	1


Adder

Addition is a very important arithmetic operation, and uses the Exclusive OR gate!

Half-Adder - adds two one-bit values

		A	В	Cout	Sum
B	-sum	0	0	0	0
		0	1	0	1
		1	0	0	1
	\Box	1	1	1	0
	Cout				

Full Adder — uses two half-adders and incorporates a
carry-in

