
Laboratory 5
Processor Datapath

Description of HW Instruction Set Architecture

• 16 bit data bus

• 8 bit address bus

• 16 registers

R0 = 0 (constant)
R1 =1 (constant)
R2-R15 general purpose

Fetch Instruction from Memory

• PC register holds address of currently executing instruction
• Programs are assumed to start at address 0
• PC initialized to 0 by a reset to begin execution
• Next instruction located at current PC + 2

Branch Address

Programs do not always execute in sequential order.

When the BEQ instruction is executed, the next instruction to be executed is either:

 PC = PC + 2
or

PC = PC + 2 + (2*offset)

BEQ Rs,Rt,offset

• The offset = number of instructions away from the next value of the PC to branch
to, so must be multiplied by 2.

• Since offset is 4 bits, it must be sign-extended to 8 bits to be added to the PC.

A MUX selects the next value of the PC. The value of the Branch and Zero bits are used to
determine which is used:

• The Branch control line = 1 if a BEQ instruction is being executed.

• The Zero bit from the ALU is used to check whether Rs = Rt: it is 1 if Rs – Rt =
0 (meaning they’re equal). If Branch = 1 and Zero = 1, then the next value of the
PC will be the branch address ; otherwise, it will simply be PC + 2

In the HW computer, there is also an unconditional branch instruction called JMP (jump):

JMP offset

where the offset is a 12-bit value which specifies the number of instructions from the beginning
of the program to jump to:

PC = offset * 2

For example, JMP 3 sets the PC to 0x6, causing the instruction stored at address 0x6 (i.e., the
3rd instruction in the program) to be executed next.

Datapath

The following diagram describes the basic datapath for executing the arithmetic and logic
instructions:

R-type instructions ADD,SUB,AND,OR have format: opcode Rs Rt Rd

– read Rs and Rt from register file
– perform an ALU operation on the contents of the registers
– write the result to register Rd in register file

ALU can perform 4 possible operations,

BEQ is accomplished by subtraction (which sets the Zero bit).

BEQ and JMP do not change the value of a register.

Instruction Opcode ALUop RegWrite

ADD 0010 0010 1
SUB 0011 0110 1
AND 0100 0000 1
OR 0101 0001 1
BEQ 0111 0110 0
JMP 1000 don’t care 0

Can use decoders or simple logic to produce these signals.

Full Implementation

Procedure to Load/Execute a New Program

1. Disconnect the address bus of the Instruction Memory from the CPU
2. Set LOAD = 0

3. Set address and data switches for instruction
4. Set WR = 0, then back to 1
5. Repeat steps 3 and 4 until all instructions are loaded to memory

6. Set LOAD = 1
7. Reconnect address bus to CPU

8. Set Reset = 1, then back to 0
9. Set CLK = 1, then back to 0, for each instruction.

Address Instruction op _ Rs Rt Rd/offset
0: ADD R1 R1 R2 # initialize R2
2: ADD R2 R1 R3 # initialize R4
4: AND R2, R2, R4 # copy R2 to R4
6: AND R3, R3, R5 # copy R3 to R5
8: (LOOP) BEQ R5, R0, 3 # if R5 is 0, branch to end
A: SUB R5, R1, R5 # decrement R5
C: ADD R4, R4, R4 # update result in R4
E: JMP 4 # repeat loop
10: (END) AND R4,R4,R4 #program will end here with value of R4

displayed at outputs of ALU

