
 CS240 Lab 6
 GDB Practice

You should use your Linux environment (VSCode) for this assignment, and enter the commands given in
the Terminal.

If you did the practice problems for the Pointers assignment, you should already have the cmemory
repository.

This exercise is similar to part 8 from the practice problems (but even if you did that problem, please
repeat here for the lab assignment).

If you do not already have the repository, get it with:

 $ cs240 start cmemory

The file strings3.c from the cmemory repository for the pointers assignment contains the following code:

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char** argv) {
 char** commandA = (char**)malloc(3 * sizeof(char*));

 commandA[0] = "emacs";
 commandA[1] = "strings.c";
 commandA[2] = NULL;

 free(commandA);

 char** commandB = (char**)malloc(3 * sizeof(char*));

 commandB[0] = "ls";
 commandB[1] = "cs240-pointers";
 commandB[2] = NULL;

 commandA[1] = "uh oh";
 printf("A: %s %s\n", commandA[0], commandA[1]);
 printf("B: %s %s\n", commandB[0], commandB[1]);

 free(commandB);

 return 0;
}

Compile the program with the following command:

 $ gcc -Wall --std=c99 -g -O -o strings3 strings3.c

Note: Using the –g option creates debugging information for use in gdb.

Use gdb to examine memory and understand the connection between the diagram and real memory.

 $ gdb ./strings3

Set a breakpoint at the beginning of the program:

 (gdb) break main

1. What address in memory does main begin?

Run the program:

 (gdb) run

It will hit the breakpoint, at the beginning of main.

Execute a single step of the program:

 (gdb) step

 char** commandA = (char**)malloc(3 * sizeof(char*));

It displays the next instruction to be executed after taking the step, which will be to allocate memory for
commandA, an array of 3 pointers.

Take another step to perform the allocation, and then examine (x) the value of commandA

 (gdb) step

 (gdb) x commandA

2. What address in memory does commandA refer to?

Take three more steps to execute the statements that initialize the commandA array:

commandA[0] = "emacs";

 (gdb) step

 commandA[1] = "strings.c";

 (gdb) step

 commandA[2] = NULL;

 (gdb) step

Display the contents of the commandA array (/3a means display 3 addresses or pointers to strings):

 (gdb) x /3a commandA

3.. Why is the last address displayed 0x0?

Display the strings:

 (gdb) x /s *commandA

 (gdb) x /s *(commandA + 1)

Take a step to free (deallocate) commandA:

 free(commandA)

 (gdb) step

 char** commandB = (char**)malloc(3 * sizeof(char*));

The next instruction will allocate space on the heap for another array of 3 pointers.

Take another step to perform the allocation, and then examine the value of commandB:

 (gdb) step

 (gdb) x commandB

Also, examine commandA again:

 (gdb) x commandA

4. What do you notice about the two values?

5. Why do you think this happened?

Take three more steps to execute the statements that initialize the commandB array:

 commandB[0] = "ls";

 (gdb) step

 commandB[1] = "cs240-pointers";

 (gdb) step

 commandB[2] = NULL;

 (gdb) step

Display the contents of the commandB array:

 (gdb) x /3a commandB

Now execute the next instruction:

 commandA[1] = "uh oh";

 (gdb) step

And again display the contents of the command array:

 (gdb) x /3a commandB

6. Explain why commandB has changed.

Complete execution of the program:

 printf("A: %s %s\n", commandA[0], commandA[1])

 (gdb) step

 printf("B: %s %s\n", commandB[0], commandB[1]);

 (gdb) step

7. Explain the results of the print statements.

8. How could you modify the program to prevent this incorrect output?

Quit out of gdb:

 (gdb) quit
	

