
CS 240
Laboratory 8 Assignment

Buffer Overflow

Read the partial description of the buffer overflow assignment below, and answer the questions at the
end. You only need to hand in the answers on the final page.

This assignment helps you develop a detailed understanding of the call stack organization by
deploying a series of buffer overrun attacks on a vulnerable executable file called laptop .

Goals

• To understand the procedure call abstraction and the details of its implementation with the stack
discipline.

• To understand the far-reaching impacts of system design choices, especially through security
implications of the call stack in a language that does not enforce memory safety.

• To understand the principles of buffer overrun vulnerabilities through practice exploits in a
controlled environment.

• To scare yourself a bit when realizing that the same kind of vulnerability you exploited probably
exists somewhere in the software powering your healthcare, transportation, utilities, and more.

Repository

Your task is craft exploit strings that accomplish four increasingly sophisticated buffer overrun attacks
when provided as input to the vulnerable laptop executable.

Your starter repository will contain the following files:

• questions.txt : file for English descriptions of your exploits

• exploit1.hex , exploit2.hex , exploit3.hex , exploit4.hex : files for Exploits 1-4

• hex2raw : utility to convert human-readable exploit descriptions written in hexadecimal to raw
bytes

• id2cookie : utility to convert user ID to unique “cookie” value

• Makefile : recipes to test your exploits

• laptop : executable you will attack

• laptop.c : important parts of C code used to compile laptop

Formatting Exploit Strings with hex2raw

Constructing exploits involves tricky tasks like writing untypeable characters and determining the byte
encoding of x86 instructions. Use the techniques below to simplify your job.

Each ASCII character in a string is represented by one byte. For example 'A' is represented by the
byte value also described by the hexadecimal number value 0x41 .

While your exploits will be delivered under the guise of strings, they will embed sequences of bytes
encoding addresses, numbers, or other non-character data.

It is hard enough to map each desired byte value in your exploit back to a character by hand, but
often, the specific bytes required do not even correspond to any typeable or printable ASCII
characters, making it “difficult” to type your exploit string on a keyboard or view it on the screen.

So, Do not try to encode your exploit by hand!

We have provided a tool called hex2raw to encode exploit strings:

• The input to hex2raw is a human-readable text description of a byte sequence where each byte
is written as pair of hexadecimal digits. Successive bytes may be separated by spaces.

• The output of hex2raw is a raw byte sequence, where each byte has the hexadecimal value
described by the corresponding pair of characters in the input.

Suppose we want the raw sequence of bytes whose values are the hexadecimal numbers:

 0x01 0x02 0x03 0x04

 Given the input 01 02 03 04 , the hex2raw utility will output the desired 4-byte sequence.

To run hex2raw , type the series of hexadecimal byte value descriptions you want in a file
(e.g., exploit1.hex for Exploit 1).

Following our example, we could save the string 01 02 03 04 into the file exploit1.hex using
Emacs. Then run:

$./hex2raw < exploit1.hex > exploit1.bytes

The shell’s input redirection symbol < instructs the command-line shell to use the contents
of exploit1.hex as standard input to hex2raw , instead of looking for input from the keyboard.
The shell’s output redirection symbol > instructs the command-line shell to store the standard
(printed) output of hex2raw into a file called exploit1.bytes . Input and output redirection
(< and >) are general features of the command-line shell that can be used independently and with
any executable command.

Once the exploit string byte sequence is stored into the file exploit1.bytes , run laptop with the
contents of the file exploit1.bytes as input:

$./laptop -u your_cs_username < exploit1.bytes

Naturally, as with compiled source code, if you update your exploit string specification
in exploit1.hex , you must run hex2raw again to translate the new version to a byte sequence
in exploit1.bytes to use this new exploit with the laptop .

Warning: do not use 0A

Your exploit string must not contain byte value 0x0A (0A in hex2raw input) at any intermediate
position, since this is the ASCII code for newline ('\n'). When Gets() encounters this byte, it will
assume you intended to terminate the string input. hex2raw will warn you if it encounters this byte
value.

Running and Testing Exploits

To Run an individual exploit:

1. Write the exploit string in the file exploit1.hex .

2. Translate it to raw bytes with hex2raw :

 $./hex2raw < exploit1.hex > exploit1.bytes

3. Run it directly (possible for Exploits 1 and 2):

 $./laptop -u your_cs_username < exploit1.bytes

or under gdb (required for Exploits 3 and 4):

 $ gdb ./laptop

 (gdb) run -u your_cs_username < exploit1.bytes

Questions
1. What files from the starter repository will you modify as part of the assignment, and why?

2. What is the purpose of hex2raw?

3. Why shouldn’t you use the value 0A in your exploit strings?

4. What would you put in your exploit file is you wanted the 8-byte value 0x0000000000400ff3 to

be made into raw bytes, but in the order from least significant to most significant byte?

5. Which exploits will run alone without GDB? Which exploits work only under GDB?

6. What are the steps for running an exploit?

