
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 240
Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Representing Data with Bits

bits, bytes, numbers, and notation

Data as Bits 1

positional number representation

Base determines:
Maximum digit (base – 1).  Minimum digit is 0.
Weight of each position.

Each position holds a digit.
Represented value = sum of all position values

Position value = digit value x baseposition

Data as Bits 2

2 4 0
100 10 1
102 101 100

2 1 0

= 2 x 102 + 4 x 101 + 0 x 100

position
weight

binary = base 2

When ambiguous, subscript with base:
10110 Dalmatians (movie)

1012-Second Rule (folk wisdom for food safety)

Data as Bits 3

1 0 1 1
8 4 2 1
23 22 21 20

3 2 1 0

= 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20

position
weight

irony

Powers of 2:
memorize up to ≥ 210 (in base ten)

Data as Bits 4

ex



conversion and arithmetic
1910 = ?2 10012 = ?10

24010 = ?2 110100112 = ?10

1012 + 10112 = ?2 10010112 x 210 = ?2

Data as Bits 6

Show powers, strategies.

ex byte = 8 bits
Smallest unit of data
used by a typical modern computer

Binary 000000002 -- 111111112
Decimal            00010 -- 25510
Hexadecimal 0016 -- FF16

Programmer’s hex notation (C, etc.):
0xB4 = B416

Octal (base 8) also useful.

Data as Bits 8

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex Decim
al

Binary

What do you call 4 bits?

a.k.a. octet

Byte = 2 hex digits!

Hex encoding practice

Data as Bits 9

ex char: representing characters
A C-style string is represented by a series of bytes (chars).

— One-byte ASCII codes for each character.

— ASCII = American Standard Code for Information Interchange

Data as Bits 10

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 ( 56 8 72 H 88 X 104 h 120 x
41 ) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [ 107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93 ] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o 127 del



word |wərd|, n.
Natural unit of data used by processor.

Fixed size (e.g. 32 bits, 64 bits)
Defined by ISA: Instruction Set Architecture

machine instruction operands
word size = register size = address size

Data as Bits 11

Java/C int = 4 bytes: 11,501,584

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6  5  4  3  2  1  0

0  0  0  0  0  0 0  0  1  0  1  0  1  1  1  1  1  0  0  0  0  0  0 0 0 0  1  0  0  0  0  0

MSB: most significant bit LSB: least significant bit

fixed-size data representations

(size in bytes)
Java Data Type          C Data Type         [word = 32 bits]  [word = 64 bits]

boolean 1 1
byte char 1 1

char 2 2
short short int 2 2
int int 4 4

float float 4 4
long int 4 8

double double 8 8
long long long 8 8

long double 8 16

Data as Bits 12

Depends on word size!

bitwise operators
Bitwise operators on fixed-width bit vectors.

AND &      OR | XOR ^ NOT ~

Laws of Boolean algebra apply bitwise.
e.g., DeMorgan’s Law:  ~(A | B) = ~A & ~B

Data as Bits 13

01101001
& 01010101

01000001

01101001
| 01010101

01101001
^ 01010101 ~ 01010101

01010101
^ 01010101

ex Aside: sets as bit vectors

Representation: n-bit vector gives subset of {0, …, n–1}.
ai = 1  ≡   i Î A

01101001   { 0, 3, 5, 6 }
76543210

01010101   { 0, 2, 4, 6 }
76543210

Bitwise Operations Set Operations?
& 01000001 { 0, 6 } Intersection
|  01111101 { 0, 2, 3, 4, 5, 6 } Union
^ 00111100 { 2, 3, 4, 5 } Symmetric difference
~ 10101010 { 1, 3, 5, 7 } Complement

Data as Bits 14

ex



bitwise operators in C
& | ^ ~ apply to any integral data type

long,  int,  short,  char, unsigned

Examples (char)
~0x41 = 

~0x00 = 

0x69 & 0x55 = 

0x69 | 0x55 = 

Many bit-twiddling puzzles in upcoming assignment
Data as Bits 15

ex logical operations in C

&&     ||     ! apply to any "integral" data type
long,  int,  short,  char, unsigned

0 is false nonzero is true result always 0 or 1

early termination a.k.a.   short-circuit evaluation

Examples (char)
!0x41 =
!0x00 =

!!0x41 =

0x69 && 0x55 =
0x69 || 0x55 =

Data as Bits 16

ex

Encode playing cards.

52 cards in 4 suits
How do we encode suits, face cards?

What operations should be easy to implement?
Get and compare rank
Get and compare suit

Data as Bits 17

Two possible representations

52 cards – 52 bits with bit corresponding to card set to 1

“One-hot” encoding
Hard to compare values and suits independently
Not space efficient

4 bits for suit, 13 bits for card value – 17 bits with two set to 
1

Pair of one-hot encoded values
Easier to compare suits and values independently
Smaller, but still not space efficient

Data as Bits 18

52 bits in 2 x 32-bit words



Two better representations

Binary encoding of all 52 cards – only 6 bits needed

Number cards uniquely from 0
Smaller than one-hot encodings.
Hard to compare value and suit

Binary encoding of suit (2 bits) and value (4 bits) separately

Number each suit uniquely
Number each value uniquely
Still small
Easy suit, value comparisons

Data as Bits 19

low-order 6 bits of a byte

suit value

mask: a bit vector that, when bitwise 
ANDed with another bit vector v, turns 
all but the bits of interest in v to 0

Compare Card Suits

char hand[5];       // represents a 5-card hand
char card1, card2;  // two cards to compare
...
if ( sameSuit(hand[0], hand[1]) ) { ... }

Data as Bits 20

#define SUIT_MASK 0x30

int sameSuit(char card1, char card2) {
return !((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));

//same as (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

0 0 1 1 0 0 0 0

suit value

mask: a bit vector that, when bitwise 
ANDed with another bit vector v, turns 
all but the bits of interest in v to 0

Compare Card Values

char hand[5];       // represents a 5-card hand
char card1, card2;  // two cards to compare
...
if ( greaterValue(hand[0], hand[1]) ) { ... }

Data as Bits 21

#define VALUE_MASK

int greaterValue(char card1, char card2) {

}

suit value

ex Bit shifting

Data as Bits 22

1 0 0 1 1 0 0 1

x << 2 1 0 0 1 1 0 0 1 0 0
fill with zeroes on right

x

logical shift left 2

0 0 1 0 0 1 1 0 0 1
lose bits on right

1 0 0 1 1 0 0 1

x >> 2

x

lose bits on left

logical shift right 2

1 1 1 0 0 1 1 0 0 1arithmetic shift right 2

fill with zeroes on left

fill with copies of MSB on left
x >> 2



Shift gotchas
Logical or arithmetic shift right: how do we tell?
C: compiler chooses

Usually based on type: rain check!

Java: >> is arithmetic, >>> is logical

Shift an n-bit type by at least 0 and no more than n-1.
C: other shift distances are undefined.

anything could happen

Java: shift distance is used modulo number of bits in shifted type
Given  int x:    x << 34 == x << 2

Data as Bits 23

!!! Shift and mask: extract a bit field
Write a C function that
extracts the 2nd most significant byte
from its 32-bit integer argument.

Example behavior:

Data as Bits 24

ex

Desired bits in least significant byte.All other bits are zero.

0b 01100001 01100010 01100011 01100100 

0b 00000000 00000000 00000000 01100010

argument:

expected result:

int get2ndMSB(int x) {


