WELLESLEY
CS 240
Foundations of Computer Systems ix;

Memory Hierarchy
and Cache

Memory hierarchy
Cache basics
Locality
Cache organization
Cache-aware programming

https://cs.wellesley.edu/~cs240/ Memory Hierarchy and Cache 2

https://cs.wellesley.edu/~cs240/

Software

Hardware

Program, Application

Programming Language
Compiler/Interpreter

Operating System

Instruction Set Architecture

Digital Logic

Devices (transistors, etc.)

SOIid'State Phy§ig§ry Hierarchy and Cache

3

How does execution time grow with SIZE?

int array[SIZE];
fillArrayRandomly(array) ;

int s = 0;

for (int i = 0; i < 200000; i++)
for (int j = 0; j < SIZE; j++)

s += array[]]; t
TIME

{
{

SIZE

Reality

Time

SIZE

Memory Hierarchy and Cache 5

Processor-memory bottleneck

Processor performance

doubled about _
every 18 months Bus bandwidth
evolved much slower _
Main
CPU | Reg Cache
T Memory
Bandwidth: 256 bytes/cycle Bandwidth: 2 Bytes/cycle
Latency: 1-few cycles Latency: 100 cycles

™~ Example /

Solution: caches

Cache

English:
n. a hidden storage space for provisions, weapons, or treasures
v. to store away in hiding for future use

Computer Science:

n. a computer memory with short access time used to store
frequently or recently used instructions or data

v. to store [data/instructions] temporarily for later quick retrieval

Also used more broadly in CS: software caches, file caches, etc.

General cache mechanics

CPU Block: unit of data
in cache and memory.
/////// (a.k.a. line)
// Smaller, faster, more expensive.
Cache 8 9 14 3 Stores subset of memory blocks.

(lines)

Data is moved
in block units

Memory 0 1 2 3 Larger, slower, cheaper.
4 5 6 7 Partitioned into blocks (lines).
8 9 10 11
12 13 14 15

Cache hit

Cache

Memory

CPU
Request: 14
8 9 14 3
0) 1 2 3
4 5 6 7/
8 9 10 11
12 13 14 15

1. Request data in block b.

2. Cache hit:
Block b is in cache.

Cache miss

Cache

Memory

CPU
Request: 12
8 12 14 3
12 Request: 12
0 1 2 3
4 5 6 7
8 9 || 10 11
12 13 14 15

Placement Policy:
where to put block in cache

. Request data in block b.

. Cache miss:

block is not in cache

. Cache eviction:

Evict a block to make room,
maybe store to memory.

. Cache fill:

Fetch block from memory,
store in cache.

Replacement Policy:
which block to evict

Locality: why caches work

Programs tend to use data and instructions at addresses near
or equal to those they have used recently.

Temporal locality:
Recently referenced items are likely C)

to be referenced again in the near future. block
Spatial locality:
ltems with nearby addresses are likely ﬂ
to be referenced close together in time.
block

How do caches exploit temporal and spatial locality?

Locality #1

int sum = 0; What is stored in memory?

for (int i = 0; i < n; i++) {
sum += a[i];

}

return sum;

Data:

Instructions:

Locality #2

row-major M x N 2D array in C

~

sum += a[i][]];
}
}

return sum;

int sum array rows(int a[M][N]ﬁ'{

int sum = 0;
, _ , , al0][0] a[0][1] a[0][2]
for (int 1 = 0; 1 < M; i++) { a[1]l0] a[l][1] a[1][2]
for (int j = 0; J < N; J++) { | a@200] a[2][1] a[2][2]

a[0][3]
a[1][3]
a[2][3]

Locality #3

row-major M x N 2D array in C

~

sum += a[i][]];
}
}

return sum;

int sum array cols(int a[M][NIﬁ'{

int sum = 0;
, , _ _ a[0][0] a[O0][1] a[O][2]
for (int j = 0; J < N; J++) { a[1][0] a[1][1] a[1][2]
for (int i = 0; 1 < M; i++) { |a@2]0] a[2][1] a[2][2]

a[0][3]
a[1][3] -
a[2][3]

Locality #4

int sum array 3d(int a[M][N][N]) {
int sum = 0;

for (int 1 = 0; 1 < N; i++) {
for (int j = 0; j < N; j++) {

sum += a[k][1][]];
}

}
}

return sum;

for (int k = 0; k < M; k++) {

What is "wrong" with this code?
How can it be fixed?

Cost of cache misses

Miss cost could be 100 x hit cost.

99% hits could be twice as good as 97%. How?

Assume cache hit time of 1 cycle, miss penalty of 100 cycles

Mean access time:\
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

\/

hit/miss rates

Cache performance metrics

Miss Rate

Fraction of memory accesses to data not in cache (misses / accesses)
Typically: 3% - 10% for L1; maybe < 1% for L2, depending on size, etc.

Hit Time
Time to find and deliver a block in the cache to the processor.
Typically: 1 - 2 clock cycles for L1; 5 - 20 clock cycles for L2

Miss Penalty

Additional time required on cache miss = main memory access time
Typically 50 - 200 cycles for L2 (trend: increasing!)

Memory hierarchy

Why does it work?

explicitly
program-
controlled

small, fast,
power-hungry,
expensive

large, slow,
power-efficient,
cheap

persistent storage
(hard disk, flash, over network, cloud, etc.)

Cache organization

Block
Fixed-size unit of data in memory/cache

Placement Policy

Where in the cache should a given block be stored?
= direct-mapped, set associative

Replacement Policy

What if there is no room in the cache for requested data?
= |east recently used, most recently used

Write Policy

When should writes update lower levels of memory hierarchy?
= write back, write through, write allocate, no write allocate

(byte)

address Memory
Blocks

Divide address space into fixed-size aligned blocks.

power of 2
Example: block size = 8 00001000
full byte address
00010010
/ \ 00010000
00010001
Block ID offset within block 00010011
ite - : 00010100
address bits - offset bits log,(block size) 00010101
00010110
00010111
00011000

Memory Hierarchy and Cache

block

block

block

block

jUO 949 WoJ) AjJud.idy4Ip 19pI0 SSRIppe Suimelp 910N

20

Placement policy

Memory Mapping:

Block 1D index(Block ID) = ???
0000
0001
0010
0011

0100 Cache
0101 Index

0110 00
0111 01
1000 10

1001 11
1010
1011 Small, fixed number of block slots.
1100
1101
1110
1111

-S=#slots=4

Large, fixed number of block slots.

Memory Hierarchy and Cache 21

Placement: direct-mapped

Memory Mapping:
B'°°O"O:)DO index(Block ID) = Block ID mod S
0001 (easy for power-of-2 block sizes...)
0010
0011
0100 Cache
0101 Index
0110 00
0111 01
1000 10 -S =# SIOtS =4
1001 11
1010
1011
1100
1101
1110
1111

Memory Hierarchy and Cache 22

Placement: mapping ambiguity?

Memory Mapping:

Blocok():)Do index(Block ID) = Block ID mod S
0001
0010
0011
0100 Cache
0101 Index

0110

0111
1000

1001
1010
1011
1100
1101 Which block is in slot 2?
1110
1111

-S = #slots=4

Memory Hierarchy and Cache 23

Placement: tags resolve ambiguity

Memory Mapping:
Block 1D index(Block ID) = Block ID mod S
0000
0001
0010
0011
0100 Cache
0101 Index Tag Data
0110 00 00
0111 01 11
1000 10 01
1001 11 01
1010
1011
1100
1101 . .
1110 Block ID bits not used for index.
1111

Memory Hierarchy and Cache 24

Address = tag, index, offset

What slot in the cache?
Disambiguates slot contents.

\ / Where within a block?

a-bit Address Tag Index | Offset
(a-s-b) bits s bits b bits

Block ID bits - Index bits log,(# cache slots)
Tag Index

00010010 full address of individual byte in memory
Block ID Offset within block
Address bits - Offset bits log,(block size) = b

~_

address bits

Memory Hierarchy and Cache 25

Placement: direct-nmapped

Memory Why not this mapping?
Block ID index(Block ID) = Block ID /'S
[1
gggg (still easy for power-of-2 block sizes...)
0010
0011
0100 Cache
0101 Index
0111 01
1000 10
1001 11
1010
1011
1100
11010 [
1110

1111

Memory Hierarchy and Cache 26

Puzzle #1

Cache starts empty.
Access (address, hit/miss) stream:

(OxA, miss), (0xB, hit), (0xC, miss)

What could the block size be?

Placement: direct-mapping conflicts

Block ID

0000 What happens when accessing
0001
0010 in repeated pattern:

0011 0010, 0110, 0010, 0110, 0010...?
0100 Index

0101
0110 00
0111 01
1000 10

1001 1 cache conflict

1011 Every access suffers a miss,

1100 evicts cache line needed

1101 by next access.
1110

1111

Memory Hierarchy and Cache 28

Placement: set-associative

One index per set of block slots.
Store block in any slot within set.

1-way
8 sets,
1 block each

Set
0
1
2
3
4
5
6
7

direct mapped

2-way

4 sets,
2 blocks each

Set

o b
1 ..
p 2 N
B3 o

Replacement policy: if set is full, what block should be replaced?
Common: least recently used (LRU)

Mapping:

4-way
2 sets,

4 blocks each
Set

sets

S = # 3tedS in cache

index(Block ID) = Block ID mod S

8-way
1 set,
8 blocks

fully associative

but hardware may implement “not most recently used”

Example: tag, index, offset? #1

4. bit Address Tag Index | Offset
Direct-mapped tag bits
4 slots set index bits
2-byte blocks block offset bits

index(1101) =

Example: tag, index, offset? #2

E-way set-associative
S slots
16-byte blocks

E=1-way
S = 8 sets
Set
0
1
2
3
4
5
6
7
tag bits

set index bits
block offset bits
index(0x1833)

Index | Offset

1 6-bit Address Tag
E =2-way
S =4 sets
Set

P P

1 ...

2

3 o

tag bits

set index bits
block offset bits
index(0x1833)

E =4-way
S =2 sets
Set
R FE—
N
tag bits

set index bits
block offset bits
index(0x1833)

Replacement policy

If set is full, what block should be replaced?

Common: least recently used (LRU)
(but hardware usually implements “not most recently used”

Another puzzle: Cache starts empty, uses LRU.

Access (address, hit/miss) stream:
(OxA, miss); (OxB, miss); (OxA, miss)

associativity of cache?

General cache organization (S, E, B)

E lines per set (“E-way”)

Ve A N\ set
r —
Power of 2 eooo]
\ \ block/line
S sets< oo
\ STt cache capacity:
Sx E x B data bytes
address size:
t+s+b address bits
Vv tag OQ1]2] - e B-1
\ valid bit ~~— —~ —

B = 2P bytes of data per cache line (the data block)

Cache read

E lines per set

Locate set by index
Hit if any block in set:
is valid; and
has matching tag

Y Get data at offset in block

Address of byte in memory:

t bits

s bits | b bits

tag

— A A

set block
index offset

_A
-
(
TR
TR
S=Zssets< XE X
0000000000000 0000000000000
eooe
\.
1 tag O]J1]2] cc°-" B-1
valid bit ~~ ~ —

data begins at this offset

B = 2b bytes of data per cache line (the data block)

Cache read: direct-mapped (E = 1)

This cache:

* Block size: 8 bytes

e Associativity: 1 block per set (direct mapped)

S = 2°sets <

-

Address of int:
Y tag Oj1]2]3|41}1516]|7 :
t bits 0..01 | 100
Y tag Oj1]2]3|41)15]16]|7 -
find set
Y tag Oj1]2]3|41)1516]|7

Vv

tag

0

1

2

3

4

5

6

Cache read: direct-mapped (E = 1)

This cache:

* Block size: 8 bytes

e Associativity: 1 block per set (direct mapped)

valid? + match?: yes = hit

Address of int:

t bits

0..01

100

v Itag

0

1

2

3

If no match: old line is evicted and replaced

int (4 Bytes) is here

block offset

Direct-mapped cache practice

12-bit address

16 lines, 4-byte block size
Direct mapped

Offset bits? Index bits? Tag bits?

11 10 9 8 7 6 5 4 3 2 1 0

Access 0x354
Access OxA20

Index Tag Valid BO B1 B2 B3 Index Tag Valid BO B1 B2 B3

0 19 1 99 11 23 11 8 24 1 3A 00 51 89

1 15 0 - - - - 9 2D 0 - - - -

2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B

3 36 0 - - - - B 0B 0 - - - -

4 32 1 43 6D 8F 09 C 12 0 - - - -

5 oD 1 36 72 FO 1D D 16 1 04 96 34 15

6 31 0 - - - - E 13 1 83 77 1B D3

7 16 1 11 C2 DF 03 F 14 0 - - - -

IViemory Hierarchy and Cache

Example #1 (E = 1)

Locals in registers.
Assume a is aligned such that
&a[r][c]lis aa...a rrrr cccc 000

Assume: cold (empty) cache
3-bit set index, 5-bit offset
aa...arrr rcc cc000

2,0:aa...a000 000 00000

0,0i01:02i0,3

int

sum_array rows(double a[l6][16]){
double sum = 0;

for (int r = 0; r < 16; r++){
for (int ¢ = 0; c < 16; c++){
sum += a[r][c];

041050607
0,8109{0,a!0b

/. 0,ci0dioe!of
1,0§1,111,2} 1,3

} 1,4115i16}1,7
h 1,811,9{ 1,al 1,b
return sum; pmt I
} 1,ci1,d{Lej1f
“ ~ J
int sum array cols(double a[l16][16]){

double sum = 0;

for (int ¢ = 0; c < 16; c++){
for (int r = 0; r < 16; r++){
sum += a[r][c];

}
}

return sum;

32 bytes = 4 doubles

4 misses per row of array
4*16 = 64 misses

32 bytes = 4 doubles

every access a miss

16*16 = 256 misses
AL

'd N\

a0ia1ia2ia3

—>13,0:3,1!3,2

3,3

block = 16 bytes; 8 sets in cache
Exa m ple #2 (E = 1) How many block offset bits?

How many set index bits?

int dotprod(int x[8], int y[8]) { Address bits:
int sum = 0; '
B =
for (int i = 0; i < 8; i++) { S =
) sum += x[1]%yl1]7 Addresses as bits
return sum; 0x00000000:
} 0x00000080:
16 bytes = 4 ints O0xO00000AO:
A
r ~N -
¥[0] | x[1]; ¥12] ¥[3] x[0]{ x[1]{x[2]{[3]
o x[4]} x(5]; x[6]} x(7]
if x and y are mutually aligned, if x and y are mutually unaligned, y[o]; y[1]§ y[2]i V3]
e.g., 0x00, 0x80 e.g., 0x00, 0xA0 o

y[41y[S]; y6]} y[7]

Cache read: set-associative (Example: E = 2)

This cache:
* Block size: 8 bytes

Address of int:

* Associativity: 2 blocks per set RIS 001 | 100
v tag ol1l213|4]|5]6]7 v tag 0 5|67
vl | tag | lo]1l2]3]a]s]6]7 vl | g | |o 5|67 find set
v tag ol1l21314]|5]|6]7 v tag 0 5|67

Y tag 0111213415617 Vv tag 0

Cache read: set-associative (Example: E = 2)

This cache:
* Block size: 8 bytes

* Associativity: 2 blocks per set

Address of int:

valid? + | match: yes = hit

compare both

t bits

0..01

100

v tag_|01234

617 Y tag

int (4 Bytes) is here

If no match: Evict and replace one line in set.

block offset

Example #3 (E = 2)

float dotprod(float x[8], float y[8]) {
float sum = 0;

for (int i = 0; i < 8; i++) {
sum += xX[i]*y[i];

}

return sum;

2 blocks/lines per set

X[0] x[LIx[21ix31ly[01 I LIy 2] 1vE3]

If x and y aligned,

e.g. &x[0] =0, &y[0] = 128,
can still fit both because e-ach set x[41 x[5]ix[6]ix[7][y[41iy[5]y(6] y[7]
has space for two blocks/lines ’ ‘ i E : i

4 sets

Types of Cache Misses

Cold (compulsory) miss
Conflict miss
Capacity miss

Which ones can we mitigate/eliminate? How?

Writing to cache

Multiple copies of data exist, must be kept in sync.

Write-hit policy
Write-through:
Write-back: needs a dirty bit

Write-miss policy
Write-allocate:
No-write-allocate:

Typical caches:
Write-back + Write-allocate, usually
Write-through + No-write-allocate, occasionally

Write-back, write-allocate example

eax =
ecx=T
edx=U
Cache U OXCAFE 0
/ /
tag dirty bit
Memory T OxFACE
U OxCAFE

Cache/memory not involved

1. mov ST, %ecx 7

2. mov SU, %edx

3. mov SOXFEED, (%ecx)
a. MissonT.

Write-back, write-allocate example

eax = 1. mov ST, %ecx
ecx=T 2. mov SU, %edx
edx = U 3. mov SOXFEED, (%ecx)

a. MissonT.

b. Evict U (clean: discard).
Cache T OXFEED 1 c. Fill T (write-allocate).
A A d. Write T in cache (dirty).
/ / 4. mov (%edx), %eax
tag dirty bit a. Misson U.
Memory T OxFACE

U OxCAFE

Write-back, write-allocate example

Cache

Memory

eax = OxCAFE
ecx=T
edx=U
U OxCAFE 0
/ /
tag dirty bit
T] | OXFEED
U OxCAFE

et

mov ST, %ecx

mov SU, %edx

mov SOXFEED, (%ecx)
a. MissonT.
b. Evict U (clean: discard).
c. Fill T (write-allocate).

d. Write T in cache (dirty).
mov (%edx), %eax

a. Misson U.
b. Evict T (dirty: write back).
c. Fill U.

d. Set %eax.
DONE.

Example memory hierarchy

Typical laptop/desktop processor

Processor package (c.a.201_)

__

ss: 30-40 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

' Core 0 Core 3 ' L1i-cache and d-cache:
! R R 32 KB, 8-way,

! €8s €65 Access: 4 cycles

| u L1 L1 11 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
Access: 11 cycles
L2 unified cache L2 unified cache L3 unified cache:

8 MB, 16-way,

slower, but
Main memory more likely
to hit

(Aside) Software caches

Examples

File system buffer caches, web browser caches, database
caches, network CDN caches, etc.

Some design differences

Almost always fully-associative

Often use complex replacement policies

Not necessarily constrained to single “block” transfers

Cache-friendly code

Locality, locality, locality.

Programmer can optimize for cache performance
Data structure layout
Data access patterns

Nested loops
Blocking (see CSAPP 6.5)

All systems favor “cache-friendly code”
Performance is hardware-specific

Generic rules capture most advantages
Keep working set small (temporal locality)
Use small strides (spatial locality)
Focus on inner loop code

