Floating Point Representation

Fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding

Lessons for programmers

Many more details we will skip (it’s a 58-page standard...)
See CSAPP 2.4 for more detail.

https://cs.wellesley.edu/~cs240/
Fractional Binary Numbers

\[
\sum_{k=-j}^{i} b_k \cdot 2^k
\]
Fractional Binary Numbers

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 and 3/4</td>
<td></td>
</tr>
<tr>
<td>2 and 7/8</td>
<td></td>
</tr>
<tr>
<td>47/64</td>
<td></td>
</tr>
</tbody>
</table>

Observations

- Shift left =
- Shift right =

Numbers of the form $0.111111\ldots_2$ are...?

Limitations:

- Exact representation possible when?

\[
1/3 = 0.333333\ldots_{10} = 0.
\]
Fixed-Point Representation

Implied binary point.

\[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [.\] \ b_2 \ b_1 \ b_0 \]
\[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \ .\]

range: difference between largest and smallest representable numbers

precision: smallest difference between any two representable numbers

fixed point = fixed range, fixed precision
IEEE Floating Point Standard 754
IEEE = Institute of Electrical and Electronics Engineers

Numerical form:

\[V_{10} = (-1)^s \times M \times 2^E \]

Sign bit \(s \) determines whether number is negative or positive
Significand (mantissa) \(M \) usually a fractional value in range \([1.0, 2.0)\)
Exponent \(E \) weights value by a \((-/+\) power of two
Analogous to scientific notation

Representation:

MSB \(s = \) sign bit \(s \)
\text{exp} \text{ field encodes } E \text{ (but is not equal to E)}
\text{frac} \text{ field encodes } M \text{ (but is not equal to M)}

Numerically well-behaved, but hard to make fast in hardware
Precisions

Single precision (float): 32 bits

Finite representation of infinite range...
Three kinds of values

\[V = (-1)^s \cdot M \cdot 2^E \]

1. **Normalized**: \(M = 1.xxx... \)
 As in scientific notation: \(0.011 \times 2^5 = 1.1 \times 2^3 \)
 Representation advantage?

2. **Denormalized**, near zero: \(M = 0.xxx... \), smallest \(E \)
 Evenly space near zero.

3. **Special values**:

 - **0.0**: \(s = 0 \) \(\text{exp} = 00...0 \) \(\text{frac} = 00...0 \)
 - **+inf, -inf**:
 \(\text{exp} = 11...1 \) \(\text{frac} = 00...0 \)
 Division by 0.0
 - **NaN** (“Not a Number”): \(\text{exp} = 11...1 \) \(\text{frac} \neq 00...0 \)
 sqrt(-1), \(\infty - \infty \), \(\infty \times 0 \), etc.
Value distribution

-∞ - Normalized - Denormalized + Denormalized + Normalized +∞

NaN -0.0 +0.0 NaN

Floating Point
Normalized values, with float example

\[V = (-1)^s \times M \times 2^E \]

Value: float \(f = 12345.0 \);

\[12345_{10} = 110000000111001_2 \]
\[= 1.1000000111001_2 \times 2^{13} \quad \text{(normalized form)} \]

Significand:

\[M = \begin{array}{c}
1.1000000111001_2 \\
\text{frac=} 10000001110010000000000_2
\end{array} \]

Exponent: \(E = \exp - \text{Bias} \Rightarrow \exp = E + \text{Bias} \)

\[E = 13 \]
\[\text{Bias} = 127 = 2^7 - 1 = 2^{k-1} - 1 \]

Splits exponents roughly \(-/+\)

\[\exp = 140 = 10001100_2 \]

Result:

\[0 \begin{array}{c}
10001100 \\
s \exp \frac{K=8}{n=23} \frac{K=8}{n=23}
\end{array} 10000001110010000000000000000 \]
Denormalized Values: near zero

"Near zero": \(\exp = 000...0 \)

Exponent:

\[
E = 1 + \exp - \text{Bias} = 1 - \text{Bias} \quad \text{not: } \exp - \text{Bias}
\]

Significand: leading zero

\[
M = 0.\ xxx...\ x_2 \\
\frac{\text{frac}}{} = xxx...x
\]

Cases:

\[
\exp = 000...0, \frac{\text{frac}}{} = 000...0 \quad 0.0, -0.0 \\
\exp = 000...0, \frac{\text{frac}}{} \neq 000...0
\]
Value distribution example

6-bit IEEE-like format

Bias = $2^{3-1} - 1 = 3$

Full Range

- $s=1, \ exp=101$
 - $E = 5-3 = 2$
- $s=0, \ exp=110$
 - $E = 6-3 = 3$

Zoom in to 0

- $s=1, \ exp=010$
 - $E = 2-3 = -1$
 - Denormalized = evenly spaced
- $s=0, \ exp=001$
 - $E = 1-3 = -2$

$\frac{1}{2} = 00, \ 01, \ 10, \ 11$

$M = 1.00, \ 1.01, \ 1.10, \ 1.11$

$E = -2, \ -1, \ 0, \ 1$
Try to represent 3.14, 6-bit example

6-bit IEEE-like format

Bias = $2^{3-1} - 1 = 3$

Value: 3.14;

3.14 = 11.0010 0011 1101 0111 0000 1010 000...

= 1.1001 0001 1110 1011 1000 0101 000... 2×2^1 (normalized form)

Significand:

\[M = \begin{array}{c}
1.10010001111010111011100001010000...
\end{array} \]

\[\text{frac} = \frac{1}{2} \]

Exponent:

\[E = 1 \quad \text{Bias} = 3 \quad \text{exp} = 4 = 100_2 \]

Result:

\[0 \ 100 \ 10 \quad = \quad 1.10_2 \times 2^1 = 3 \quad \text{next highest?} \]
Floating Point Arithmetic*

\[V = (-1)^s \cdot M \cdot 2^E \]

1. **Compute exact result.**
2. **Fix/Round**, roughly:
 - Adjust \(M \) to fit in \([1.0, 2.0)\)...
 - If \(M \geq 2.0 \): shift \(M \) right, increment \(E \)
 - If \(M < 1.0 \): shift \(M \) left by \(k \), decrement \(E \) by \(k \)
 - Overflow to infinity if \(E \) is too wide for \(\text{exp} \)
 - Round* \(M \) if too wide for \(\text{frac} \).
 - Underflow if nearest representable value is 0.
 - ...

*complicated...

```c
double x = ..., y = ...;
double z = x + y;
```
Lessons for programmers

\[V = (-1)^S \times M \times 2^E \]

float \neq \text{real number} \neq \text{double}

Rounding breaks associativity and other properties.

\begin{verbatim}
 double a = ..., b = ...;
 ...
 \text{x}
 if (a == b) ...
 if (abs(a - b) < epsilon) ...
\end{verbatim}