WELLESLEY

A4

CS 240
Foundations of Computer Systems

Integer Representation

Representation of integers: unsigned and signed
Modular arithmetic and overflow

Sign extension

Shifting and arithmetic

Fixed-width integer encodings

Unsigned c N non-negative integers only

Signed cZ

n bits offer only 2" distinct values.

Terminology:

“Most-significant” bit(s)
or “high-order” bit(s) \

both negative and non-negative integers

“Least-significant” bit(s)
/or “low-order” bit(s)

Multiplication
Casti
e MSB 0110010110101001 LSB
https://cs.wellesley.edu/~cs240/ Integer Representation 1 Integer Representation 2
(4-bit) unsigned integer representation modula{ arithmetic, overflow 111
15 0
11 1011 14 71111 0000 _1 13 1101
1 0 1 1) =1x23+0x22+1x21+1x2° +2 +0010 © 1110 | 00%310 2 +5 +0101
8 42 1 yeight 1101 °) oot) ? 0010
23 22 2! 20 . 1111011 integers 0100 | 4
3 2 1 0« position 1010 0101
10\ 1001 0110 5
n-bit unsigned integers: 1000 0111
8 7
in math

minimum =

maximum =

Integer Representation

x+v in n-bit unsigned arithmetic is

unsigned overflow =

Unsigned addition overflows if and only if

Integer Kepresentation 4

(4-bit) two's complement
Most-significant bit (MSB) is sign bit SIgI‘IEd mteger representatlon

0 means non-negativel means negative 1 O 1 1
Remaining bits are an unsigned magnitude

sign-magnitude

=1x-(23)+0x22+1x21+1x2°

_(23) 22 21 20

8-bit sign-magnitude: Anything weird here?
00000000 represents Arithmetic?
Example: . . .
01111111 represents 4-31=4+(-3) 4-bit two's complement integers:
| minimum =

10000101 represents 00000100

+10000011
10000000 represents maximum =

Zero?
Integer Representation 6 Integer Representation 8

two’s complement vs. unsigned 4-bit unsigned vs. 4-bit two’s complement
unsigned 1 011
;-1 ;-2 2_2 2_1 ;/places 1x23+0x22+1x2%+1x 20 123+ 0x 22+ 121+ 1x 20
-(2rt)y2n2 0022 21 20 ___two's complement 11 < - difference= =2 } ->.5
places

15

unsigned range 1111 0000 1111 0000
" 13/ 1110 0001 2 -3/ 1110 0001 \+2
° (2" values) ° 1101 0010 1101 0010
12 3 -4 4-bit +3
: 1100 0011
- (2ln-1) 0 201-1) - 1 2n -1 O G two's
- . 11\1011 \ unsigned /0100 [, _5\1011 \ complement / 0100 |, ,
, 1010 0101
two's complement range 10\ 1001 o110 /5 -6 v s

1000 0111 1000 0111

(2" values)

Integer Representation 9 8 7

8-bit representations

00001001 10000001

11111111 00100111

n-bit two's complement numbers:

minimum = maximum =

Integer Representation 11

two’s complement addition

2 0010 -2 1110
+3 +0011 +-3 +1101

5 -5

-2 1110 2 0010
+3 +0011 +-3 +1101

1 -1

1111
1110 0001 \+ 2
1101 0010

~4[1100 oo11ft 3
_d\1011 0100/, 4
1010
-6\ 1001 0110 /+ 5

Modular Arithmetic

Integer Representation 12

two’s complement overflow

Addition overflows

if and only if
if and only if
-1 0
-1 1111 1111 0000
-3 1110 0001 \ +2
ﬁ M 1101 0010
=4 [1100 o011 * 3
_g\1011 0100 |, 4
1010
-6 1001 +5
6 0110
+3 + 0011 -8 PR A

Modular Arithmetic

Some CPUs/languages raise exceptions on overflow.
C and Java cruise along silently!'Featare?0eps? 13

Reliability

Ariane 5 Rocket, 1996 |

Exploded due to cast of _
64-bit floating-point number =
to 16-bit signed number.
Overflow.

"...a Model 787 airplane ... can lose all

Boeing 787, 2015

alternating current (AC) electrical power ...
caused by a software counter internal to the
GCUs that will overflow after 248 days of
continuous power. We are issuing this AD to
prevent loss of all AC electrical power, which
could result in loss of control of the airplane."
--FAA, April 2015

Integer Representation 14

A few reasons two’s complement is awesome

Arithmetic hardware
Sign
Negative one

Complement rules

Another derivation

How should we represent 8-bit negatives?
* For all positive integers x,

we want the representations of x and —x to sum to zero.

* We want to use the standard addition algorithm.

160000061 '60000d10 00bbdOLa

*t11111111 t11111110 11111101
—50000000 00000000 —00000000

* Find a rule to represent —x where that works...

ion 16

Convert/cast signed number to larger type.

00000010

00000010

11111100

11111100

Rule/name?

8-bit 2

16-bit 2

8-bit -4

16-bit -4

Sign extension for two's complement

00000010

00000010

11111100

1111111111111100

Casting from smaller to larger signed type does sign extension.

8-bit 2

16-bit 2

8-bit -4

16-bit -4

unsigned shifting and arithmetic

o 00011011
y=x<<?: /M/// logical shift left
y == 1us 01101100
n = shift distance in bits, w = width of encoding in bits
unsigned
11101101 x = 237;
logical shift right \\\\\\\\ y=x>>2;
00111011 y ==59

two's complement shifting and arithmetic

o 10011011
y=x<<2: /W/
y==100 V11011 logical shift left

n = shift distance in bits, w = width of encoding in bits

signed

11101101 x=-19;

NN

=X>>2;
arithmetic shift right Y

y==-

Integer Representation 21

shift-and-add

Available operations
X << k

implements x * 2k
X +vy

Implement y = x * 24 usingonly <<, +, and integer literals

Parenthesize shifts to be clear about precedence, which may not always be what you expect.

Integer Representation 22

What does this function compute?

unsigned puzzle(unsigned x, unsigned y) {
unsigned result 0;

for (unsigned i = 0; i < 32; i++){
if (y & (1 << 1)) {

result = result + (x << 1i);

}

return result;

See Bits assignment prep exercise.

Integer Representation 23

What does this function compute? multiplication
nybble puzzle(nybble x, nybble y) {
nybble result = 0;
for (nybble i = 0; i < 4; i++){ . - 2 0010
My & (e d)) o | x 3 x 0011
result = result + (x << 1); - :
} tio| yE(I<<d)z| results 6 00000110
} 0000
return result; 0
} 1 -2 1110
, X2 x 0010
-4 11111100
3
- | | (. Modular Arithmetic
See Bits assignment prep exercise. Integer Representation 24 Integer Representation 25
multiplication multiplication
5 0101 5 0101
X 4 x 0100 X5 x 0101
200 00010100 25 00011001
4 -7
-3 1101 -2 1110
X7 x 0111 X 6 x 0110
-2¢ 11101011 -1 11110100
-3 Modular Arlthmet|c . 4 Modular Arlthmetlc ;

Casting Integers in C 11

Number literals: 37 is signed, 37U is unsigned

Integer Casting:
Explicit casting:

int tx = (int) 73U; // still 73

unsigned uy = (unsigned) -4; // big positive #
Implicit casting: Actually does

tx = ux; // tx = (int)ux;

uy = ty; // uy = (unsigned)ty;
void foo(int z) { ... }
// foo((int)ux);
// if ((unsigned)tx < ux)

foo(ux);

if (tx < ux)

Integer Representation 28

More Implicit Casting in C ! ! |

If you mix unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned.

How are the argument

bits interpreted?

Argument; Op Argument, Type Result
0 == (0]¢) unsigned 1

-1 < 0 signed 1

-1 < 0U unsigned 0
2147483647 < -2147483647-1

21474836470 < -2147483647-1

-1 < -2

(unsigned)-1 < -2

2147483647 < 21474836480

2147483647 < (int)2147483648U

Note: T,;,=-2,147,483,648 T, =2,147,483,647
T, must be writtenas —2147483647-1 (see pg. 77 of CSAPP for details)

Integer Representation

29

