

Operating Systems and the Process Model

Process model

Process management

(Unix/Linux/macOS)

Program, Application

Programming Language

Compiler/Interpreter

Operating System

Instruction Set Architecture

Microarchitecture

Digital Logic

Devices (transistors, etc.)

Solid-State Physics

Operating Systems

Problem: unwieldy hardware resources

complex and varied

limited

Solution: operating system

Manage, abstract, and virtualize hardware resources

Simpler, common interface to varied hardware

Share limited resources among

Protect

Operating Systems, a 240 view barely scraping the surface

Key abstractions provided by kernel

process

virtual memory

Virtualization mechanisms and hardware support:

context-switching

exceptional control flow

address translation, paging, TLBs

Processes

Program = code (static)

Process = a running program instance (dynamic)

code + state (contents of registers, memory, other resources)

Key illusions:

Logical control flow

Each process seems to have exclusive use of the CPU

Private address space

Each process seems to have exclusive use of full memory

Why? How?

Implementing logical control flow

Abstraction: every process has full control over the CPU

Implementation: time-sharing

Context Switching

Kernel (shared OS code) switches between processes

Control flow passes between processes via *context switch*.

Context =

fork

```
pid_t fork()
```

- 1. Clone current *parent* process to **create** identical* *child* process, including all state (memory, registers, **program counter**, ...).
- 2. Continue executing both copies with *one difference:*
 - returns 0 to the child process
 - returns child's process ID (pid) to the parent process

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

fork is unique: called in one process, returns in two processes!

(once in parent, once in child)

Creating a new process with fork

Process n

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

Child Process m

```
pid_t pid = fork();
if (pid == 0) {
   printf("hello from child\n");
} else {
   printf("hello from parent\n");
}
```

```
pid_t pid = fork();
if (pid == 0) {
   printf("hello from child\n");
} else {
   printf("hello from parent\n");
}
```

OS Process Model

fork and private copes

Parent and child continue from *private* copies of same state.

```
Memory contents (code, globals, heap, stack, etc.),
Register contents, program counter, file descriptors...
```

Only difference: return value from fork()

Relative execution order of parent/child after fork() undefined

```
void fork1() {
  int x = 1;
  pid_t pid = fork();
  if (pid == 0) {
    printf("Child has x = %d\n", ++x);
  } else {
    printf("Parent has x = %d\n", --x);
  }
  printf("Bye from process %d with x = %d\n", getpid(), x);
}
```

fork-exec

```
fork() clone current process
execv() replace process code and context (registers, memory)
    with a fresh program.
    See man 3 execv, man 2 execve
```

```
// Example arguments: path="/usr/bin/ls",
// argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL
void fork exec(char* path, char* argv[]) {
   pid t pid = fork();
    if (pid != 0) {
        printf("Parent: created a child %d\n", pid);
    } else {
        printf("Child: exec-ing new program now\n");
        execv(path, argv);
   printf("This line printed by parent only!\n");
```

Running the command ls in a shell:

Executing a new program

execv: load/start a program

loads/starts program in current process:

Executable filename

With argument list argv

overwrites code, data, and stack
Keeps pid, open files, a few other items

does not return

unless error

Also sets up *environment*. See also: execve.

exit: end a process

void exit(int status)
End process with status: 0 = normal, nonzero = error.
atexit() registers functions to be executed upon exit

wait for child processes to terminate

pid t waitpid(pid t pid, int* stat, int ops) Suspend current process (i.e. parent) until child with pid ends.

On success:

Return **pid** when child terminates.

Reap child.

If stat != NULL, waitpid saves termination reason where it points.

See also: man 3 waitpid

waitpid example

```
void fork wait() {
  int child status;
  pid t child pid = fork();
  if (child pid == 0) {
    printf("HC: hello from child\n");
  } else {
    if (-1 == waitpid(child pid, &child status, 0) {
      perror("waitpid");
      exit(1);
    printf("CT: child %d has terminated\n",
           child pid);
  printf("Bye\n");
  exit(0);
```

Zombies!

Terminated process still consumes system resources

Reaping with wait/waitpid

What if parent doesn't reap?

If any parent terminates without reaping a child, then child will be reaped by **init** process (pid == 1)

What if parent runs a long time? e.g., shells and servers

Error-checking

Check return results of system calls for errors! (No exceptions.)

Read documentation for return values.

Use perror to report error, then exit.

void perror(char* message)

Print "<message>: <reason that last system call failed.>"

Examining processes on Linux (demo)

```
ps
pstree
top
/proc
```