
CS 240 Lab 2
Data as Bits

• Binary and Hexadecimal Numbers

• Logic Diagrams

• Exclusive Or for bitwise comparison

• Bit Puzzles

Binary and Hexadecimal Numbers

base 16 base 10 base 2
Hex Decimal Binary .
 QD QC QB QA
0 0 0 0 0 0
1 1 0 0 0 1
2 2 0 0 1 0
3 3 0 0 1 1
4 4 0 1 0 0
5 5 0 1 0 1
6 6 0 1 1 0
7 7 0 1 1 1
8 8 1 0 0 0
9 9 1 0 0 1
A 10 1 0 1 0
B 11 1 0 1 1
C 12 1 1 0 0
D 13 1 1 0 1
E 14 1 1 1 0
F 15 1 1 1 1

15 = 1 * 23 + 1 * 22 + 1 * 21 + 1 * 20

Notice pattern and frequency of change for each
digit as values progress numerically

Logic Diagrams

NOTE: logic diagram is not the same as pin-
outs! Shows information about the logical
operation of the device.

• Inputs on left side of diagram
• Outputs on right
• Voltage shown on top
• Ground shown on bottom

Exclusive Or
Useful for comparisons

A parity bit is an extra bit of information which is sent when data is
transmitted, to check for errors in transmission. For a given set of bits,
the number of bits whose value is 1 is counted. The parity bit is an
extra bit which is also sent with the original data. The party bit is set to
0 or 1 to make the total number of 1 bits even.

 A B C Peven
 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 1 0 0
 1 1 1 1

Bit Puzzles

Example:

/* isPower2 returns 1 is x is a power of 2, and 0 otherwise
 isPower2(5) = 0, isPower2(8) = 1, isPower2(0) = 0

 No negative value is a power of 2

 Legal operations: ! ~ & ^ | + << >>

 Max operations: 20

 Rating: 4
*/

int isPower2(int x) {
 return 2
}

You must write C code to return the correct value for a given input

Constants must not be larger than 0xFF (decimal 255)

You may not use conditionals or loops

Tips

Although integers are 32-bit values in this program, assume a smaller
number of bits in your handwritten examples to make your binary
numbers easier to work with

Handwrite some specific binary values and manipulate them with
boolean operators.

Here are some simple manipulations and tips which may help you find
a solution:

o Complement the number

o Add and/or subtract 1

o Mask (bitwise AND with a mask value to isolate bits)

o Shift left and then right again (or vice versa)

o Use Exclusive OR to compare values

o Bitwise OR a general solution with a special case (such as 0)

o !(0) = 1, but !(any other number) = 0

