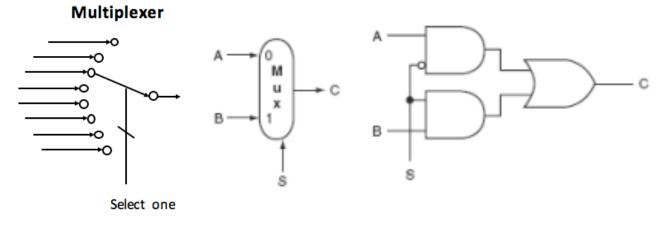
CS 240 Lab 3 Combinational and Arithmetic Circuits

- Multiplexer
- Decoder
- Adder

Multiplexer

A multiplexer can be thought of as a **selection circuit**, which steers a single input from a set of inputs through to the output, based on the select line.



- n select lines
- ⁻2ⁿ input lines
- 1 output

One of the possible 2ⁿ inputs is chosen by the n select lines, and gated through to the output of a multiplexer. The truth table for an 8x1 MUX is:

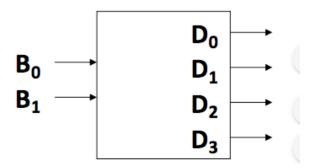
<u>S2</u>	S1	S0	Q
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Decoder

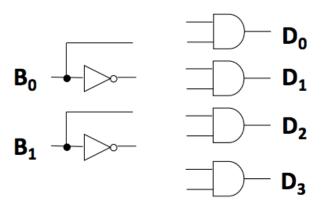
A decoder takes an n-bit binary number as an input, and asserts the corresponding numbered output from the set of 2ⁿ outputs.

- n input/select lines
- 2ⁿ outputs
- only one of the outputs is active at any given time, based on the value of the n select lines.

2x4 Decoder



Built with code detectors:



Truth table for an 3x8 decoder

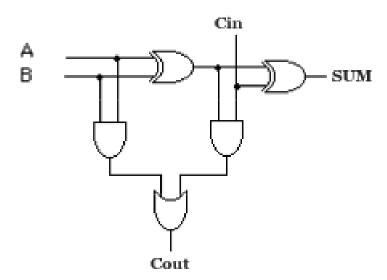
<u>S2</u>	<u>S1</u>	<u>S0</u>		$\mathbf{Q0}$	Q1	Q2	<u>Q3</u>	Q4	Q5	Q6	Q7
0	0	0	1	1	0	0	0	0	0	0	0
0	0	1		0	1	0	0	0	0	0	0
0	1	0		0	0	1	0	0	0	0	0
0	1	1	1	0	0	0	1	0	0	0	0
1	0	0		0	0	0	0	1	0	0	0
1	0	1		0	0	0	0	0	1	0	0
1	1	0	1	0	0	0	0	0	0	1	0
1	1	1		0	0	0	0	0	0	0	1

Half-Adder - adds two one-bit values

A B	7	-sum
	Cout	

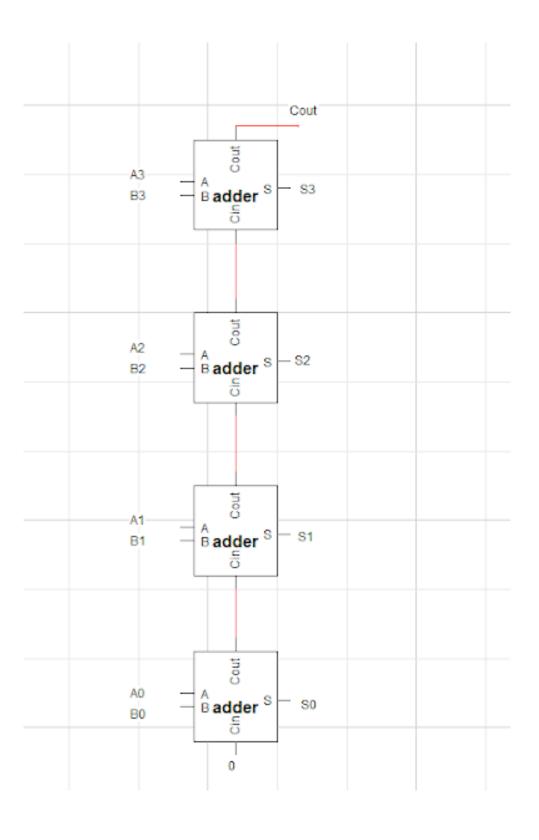
A	В	Cout	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

 ${f Full \ Adder}$ — uses two half-adders and incorporates a carry-in



Cin	A	В	Cout	Sum	
0	0	0	0	0	Sum = A⊕B⊕Cin
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	Cout = $AB+(A \oplus B)Cin$
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

4-bit Ripple-Carry Adder



Overflow when Adding

An overflow occurs when adding two n-bit numbers if the result will not fit in n bits.

An overflow can be detected when:

- -Two positive numbers added together yield a negative result, or
- -Two negative numbers added together yield a positive result.

Overflow can also be detected when:

-The Cin and Cout bits to the most significant pair of bits being added are not the same.

An overflow cannot result if a positive and negative number are added.

```
Example: given 4 bits:

0111_2

+0001_2

1000_2 = overflow NOTE: there is not a carry-out!
```

In two's complement representation, a carry-out does not indicate an overflow, as it does in unsigned representation.

```
Example: given 4 bits,

1001_2 (-7<sub>10</sub>)

+1111_2 (-1<sub>10</sub>)

1\ 1000_2 (-8<sub>10</sub>) no overflow, even though there is a carry-out
```