WELLESLEY

N4

CS 240
Foundations of Computer Systems

Representing Data with Bits

bits, bytes, numbers, and notation

https://cs.wellesley.edu/~cs240/ DataasBits 1

binary = base 2 Binary digits are called bits: 0, 1

base = 2 (binary)

1 0 1 1

8 4 2 1< i
e e ” 2 |~ weight

=1x23+40x22+1x21+1x20

When ambiguous, subscript with base:

101,, Dalmatians (movie)

101,-Second Rule (folk wisdom for food safety)

Data as Bits 3

positional number representation

base = 10 (decimal)

2 4 0

100 10 1 <— i
weight

102 100 100

2 1 0 o+ position

Base determines:
Maximum digit (base — 1). Minimum digit is 0.
Weight of each position.

Each position holds a digit.

Represented value = sum of all position values
position value = digit value x baserosition

Powers of 2:
memorize up to 2 210 (in base ten)

Power: 27 | Decimal value

V|l |IN|oofunn|~|lwW|N|-L]|O

=
o

[y
[N

[any
N

a
[S)

=2x102+4x10'+0x10°

Data as Bits

2

Data as Bits

4



conversion from binary to decimal conversion from decimal to binary

=7 =7
101101,=7, 19,,= 2,
Divide-by-2 Approach Powers-of-2 Approach
(nght to Left) 16 8 4 2 1 (Left to nght) 16 8 4 2 1
Quotient Remainder? Value Power that fits?

Interpret the positional representation accordingto the base:

sum the place weights where 1 appears (in either direction).
Data as Bits 6 Data as Bits

binary arithmetic conversion and arithmetic

110, + 1011, =2, 1101,-1011,=7?, 19,,= 2, 1001, = ?,,
240, = ?, 11010011, = ?,,
101, + 1011, =2, 1001011, % 2,5 = 2,

1001011,% 2,,=?,

Data as Bits 8 Data as Bits



byte = 8 bits
a.k.a. octet

Smallest unit of data

used by a typical modern computer

Binary 00000000, -- 11111111,
Decimal 000,45-- 255;,
Hexadecimal 00, - FFyg

Byte = 2 hex digits!

Programmer’s hex notation (C, etc.):
0xB4 = B4,

Octal (base 8) also useful.

word |ward/, n.

Natural unit of data used by processor.

Fixed size (e.g. 32 bits, 64 bits)
Defined by ISA: Instruction Set Architecture

machine instruction operands
word size = register size = address size

What do you call 4 bits?‘

& o
o o &
0|0 0000
1 1 0001
2 2 0010
3 3 0011
4 | 4 0100
5 5 0101
6| 6 0110
7 7 0111
8| 8 1000
9|9 1001
A | 10| 1010
B |11 | 1011
C | 12| 1100
D |13 | 1101
E | 14| 1110
F |15 ] 1111

Data as Bits 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 76 5 4 3 2 1 0

‘000000001010lllllOOOOOOOODlOOOOO‘

\ Java/Cint = 4 bytes: 11,501,584 T

MSB: most significant bit

LSB: least significant bit

Data as Bits 14

char: representing characters

A C-style string is represented by a series of bytes (chars).
— One-byte ASCII codes for each character.
— ASCII = American Standard Code for Information Interchange

32 space 48 0 64 @ 80
33 ! 49 1 65 A 81
34 " 50 2 66 B 82
35 # 51 3 67 C 83
36 S 52 4 68 D 84
37 % 53 5 69 E 85
38 & 54 6 70 F 86
39 ’ 55 7 71 G 87
40 ( 56 8 72 H 88
41 ) 57 9 73 | 89
42 * 58 : 74 J 90
43 + 59 ; 75 K 91
44 , 60 < 76 L 92
45 - 61 = 77 M 93
46 . 62 > 78 N 94
47 / 63 ? 79 [0] 95

S~~~ N=<XS<cCcHw=mPO DO

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111

033 —x— — Mm@ -0 Q0 T O

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

?~—~N< X £ < C +0n 59T

-3
[N

Java Data Type C Data Type
boolean
byte char
char
short short int
int int
float float
long int
double double
long long long

/ long double

Depends on word size!

fixed-size data representations

Data as Bits

(size in bytes)

13

[word = 32 bits] [word= 64 bits]

1

© 0000 D DD NNBR

1

00 00 00~ A NN PP

=
)]

Data as Bits

15



bitwise operators

it= Boolean

b
0 = false
1 = true

Bitwise operators on fixed-width bit vectors.

AND & OR/| XOR”A  NOT~
01101001 01101001 01101001
& 01010101 [ 01010101 A 01010101 ~ 01010101
01000001
01010101

Laws of Boolean algebra apply bitwise.

e.g., DeMorgan’s Law: ~(A | B)=~A & ~B

Representation Example 1:
Sets as Bit Vectors

Representation: n-bit vector gives subset of {0, ...

701010101

a;=1 =i €A

a = 0b01101001 A={0,3,56}
6543210

b = 0001010101 B={0,2,4,6}

6543210

Bitwise Operations

Data as Bits

Set Operations

Intersection

Symmetric difference

a & b = 0001000001 {0, 6}
a | b = 0p01111101 {0,2,3,4,65,6} Union
a ~ b = 0b00111100 {2,3,4,5}

~ b = 0b10101010 {1,3,5,7}

Complement

Data as Bits

16

18

bitwise operators in C

& | A~

Examples (char)

~0x41 =
~0x00 =
0x69 & 0x55
0x69 | 0x55

apply to any integral data type
long, int, short, char, unsigned

Many bit-twiddling puzzles in upcoming assignment

logical operations in C

&& || !

0is false

early termination a.k.a.

Examples (char)

10x41
10x00
110x41

apply to any "integral" data type
long, int, short, char, unsigned

nonzero is true

0x69 && 0Ox55 =
0x55 =

0x69 ||

short-circuit evaluation

result always 0 or 1



Representation Example 2:

Playing Cards Two possible representations

52 cards in 4 suits 52 cards — 52 bits with bit corresponding to card set to 1
How do we encode suits, face cards? NSNS EEEEEEEEEESEEEEEEEEEEEESE IEEEEENEEEEEEESESEEEEEEEEEEEEEEEE)
What operations should be easy to implement? 52 bits in 2 x 32-bit words

“One-hot” encoding

Getand compare rank Hard to compare values and suits independently

Get and compare suit Not space efficient
IA 2 3 4 5 6 7 . . . . .
S R e el Al el W 4 bits for suit, 13 bits for card value — 17 bits with two set to
IR R KA R KR KEH
5 e e [(aaliaaliesles MO T T O il
® - o (aa s —
H ol ol ool ool ool oo
B R e v vy live Pair of one-hot encoded values
v v v vye | ve . ) )
o asl sl aalaalaalaa Easier to compare suits and values independently
& 26 [0 ‘300?00?0030‘0 S I b il ffici
R N o Lool et maller, but still not space efficient
MR R KX EEH KX KX
Data as Bits 20 Data as Bits 21
Two better representations Compare Card Suits
mask: a bit vector that, when bitwise
_ _ . ANDed with.another bit vgctor v, turns 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Binary encoding of all 52 cards — only 6 bits needed all but the bits of interest in v to 0 ——
LTI T T TT] #define SUIT MASK 0x30 suit  value
Number cards uniquely from 0 low-order 6 bits of a byte

int sameSuit (char cardl, char card2) {

Smaller than one-hot encodings. return ! ((cardl & SUIT MASK) “ (card2 & SUIT MASK)) ;

Hard to compare value and suit

//same as (cardl & SUIT MASK) == (card2 & SUIT_MASK);
Binary encoding of suit (2 bits) and value (4 bits) separately }
LI LT TP ]
Number each suit uniquely
A suit value
Number each value uniquely
char hand[5]; // represents a 5-card hand

Still small

Easy suit, value comparisons o
Y P if ( sameSuit(hand[0], hand[1]1) ) { ... }

Data as Bits 22 Data as Bits 23



Compare Card Values

mask: a bit vector that, when bitwise

ANDed with another bit vector v, turns | | | | | | | |
all but the bits of interestin vto 0 / p—
suit value

#define VALUE MASK

int greaterValue (char cardl, char card2) {

char hand[5]; // represents a 5-card hand

if ( greaterValue (hand[0], hand[1]) ) { ... }

Data as Bits 24

Shift gotchas

Logical or arithmetic shift right: how do we tell?
C: compiler chooses

Usually based on type: rain check!
Java: >> is arithmetic, >>> is logical

Shift an n-bit type by at least 0 and no more than n-1.
C: other shift distances are undefined.
anything could happen
Java: shift distance is used modulo number of bits in shifted type

Given intx: x<<34==x<<2

Data as Bits 26

Bit shifting
X 10011001]

W

X << 2 01100100/ logical shift left 2
lose bits on left
10011001] X
shift right 2 100110
lose bits on right
shiftright2 [1 1100110

Data as Bits 25

Shift and mask: extract a bit field

Write a C function that
extracts the 2"¥ most significant byte
from its 32-bit integer argument.

Example behavior:
argument: 01100001/01100010) 01100011 01100100

expected result: 00000000 00000000 00000000 (01100010

All other bits are zero. Desired bits in least significant byte.

int get2ndMSB (int x) {

Data as Bits 27



