
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 240
Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Operating Systems
and the Process Model

Process model
Process management
(Unix/Linux/macOS)

OS Process Model 1

https://cs.wellesley.edu/~cs240/

Devices (transistors, etc.)

Solid-State Physics

Ha
rd
w
ar
e

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Program, Application
So
ft
w
ar
e

OS Process Model 2

Operating Systems
Problem: unwieldy hardware resources

complex and varied

limited

Solution: operating system
Manage, abstract, and virtualize hardware resources

Simpler, common interface to varied hardware
Share limited resources among
Protect

OS Process Model 3

Operating Systems, a 240 view
Key abstractions provided by kernel

process
virtual memory

Virtualization mechanisms and hardware support:
context-switching
exceptional control flow
address translation, paging, TLBs

OS Process Model 4

barely scraping the surface

Processes
Program = code (static)
Process = a running program instance (dynamic)

code + state (contents of registers, memory, other resources)

Key illusions:
Logical control flow

Each process seems to have exclusive use of the CPU

Private address space
Each process seems to have exclusive use of full memory

Why? How?

OS Process Model 5

Today

Next Weeks

Implementing logical control flow

OS Process Model 6

Abstraction: every process has full control over the CPU

Implementation: time-sharing

time

Process A Process B Process C

Process A Process B Process C

time

Context Switching
Kernel (shared OS code) switches between processes

Control flow passes between processes via context switch.
Context =

OS Process Model 7

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

fork
pid_t fork()

1. Clone current parent process to create identical* child process,
including all state (memory, registers, program counter, …).

2. Continue executing both copies with one difference:
• returns 0 to the child process
• returns child’s process ID (pid) to the parent process

fork is unique: called in one process, returns in two processes!
(once in parent, once in child)

OS Process Model 8

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

*almost. See man 3 fork for exceptions.

Creating a new process with fork

OS Process Model 9

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Process n

Child Process m

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

à m pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

à 0

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

hello from parent hello from childWhich prints first?

1

2

3

fork and private copes
Parent and child continue from private copies of same state.

Memory contents (code, globals, heap, stack, etc.),
Register contents, program counter, file descriptors…

Only difference: return value from fork()
Relative execution order of parent/child after fork() undefined

OS Process Model 10

void fork1() {
int x = 1;
pid_t pid = fork();
if (pid == 0) {

printf("Child has x = %d\n", ++x);
} else {

printf("Parent has x = %d\n", --x);
}
printf("Bye from process %d with x = %d\n", getpid(), x);

}

fork-exec
fork() clone current process
execv() replace process code and context (registers, memory)

with a fresh program.
See man 3 execv, man 2 execve

OS Process Model 11

// Example arguments: path="/usr/bin/ls”,
// argv[0]="/usr/bin/ls”, argv[1]="-ahl", argv[2]=NULL
void fork_exec(char* path, char* argv[]) {

pid_t pid = fork();
if (pid != 0) {

printf("Parent: created a child %d\n”, pid);
} else {

printf("Child: exec-ing new program now\n");
execv(path, argv);

}
printf("This line printed by parent only!\n");

}

Executing a new program

OS Process Model 12

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/ls
Data

fork():

exec():

Running the command ls in a shell:

parent child child

Code/state of shell process.

Copy of code/state
of shell process.

Replaced by code/state of ls.

Code/state of shell process.

1

2 2 3

execv: load/start a program
int execv(char* filename,

char* argv[])

loads/starts program in current process:
Executable filename
With argument list argv

overwrites code, data, and stack
Keeps pid, open files, a few other items

does not return
unless error

Also sets up environment. See also: execve.

OS Process Model 13

Null-terminated
env var strings

unused

Null-terminated
argument strings

envp[n] == NULL
envp[n-1]

envp[0]
…

Linker vars

argv[argc] == NULL
argv[argc-1]

argv[0]
…

envp

argc
argv

Stack bottom

Stack frame for
main Stack top

exit: end a process
void exit(int status)

End process with status: 0 = normal, nonzero = error.
atexit() registers functions to be executed upon exit

OS Process Model 14

wait for child processes to terminate

pid_t waitpid(pid_t pid, int* stat, int ops)
Suspend current process (i.e. parent) until child with pid ends.
On success:

Return pid when child terminates.
Reap child.
If stat != NULL, waitpid saves termination reason where it points.

See also: man 3 waitpid

OS Process Model 15

waitpid example

OS Process Model 16

void fork_wait() {
int child_status;
pid_t child_pid = fork();

if (child_pid == 0) {
printf("HC: hello from child\n");

} else {
if (-1 == waitpid(child_pid, &child_status, 0) {

perror("waitpid");
exit(1);

}
printf("CT: child %d has terminated\n”,

child_pid);
}
printf("Bye\n");
exit(0);

}

HCBye

CTBye

Zombies!
Terminated process still consumes system resources

Reaping with wait/waitpid

What if parent doesn’t reap?
If any parent terminates without reaping a child, then child will
be reaped by init process (pid == 1)
What if parent runs a long time? e.g., shells and servers

OS Process Model 17

Error-checking
Check return results of system calls for errors! (No exceptions.)
Read documentation for return values.
Use perror to report error, then exit.

void perror(char* message)
Print "<message>: <reason that last system call failed.>"

OS Process Model 18

Examining processes on Linux (demo)
ps
pstree
top
/proc

OS Process Model 19

