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Operating Systems
and the Process Model

Process model
Process management
(Unix/Linux/macOS)
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Operating Systems
Problem: unwieldy hardware resources

complex and varied

limited

Solution: operating system
Manage, abstract, and virtualize hardware resources 

Simpler, common interface to varied hardware
Share limited resources among
Protect
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Operating Systems, a 240 view
Key abstractions provided by kernel

process
virtual memory

Virtualization mechanisms and hardware support:
context-switching
exceptional control flow
address translation, paging, TLBs
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barely scraping the surface



Processes
Program = code (static)
Process = a running program instance (dynamic)

code + state (contents of registers, memory, other resources)

Key illusions:
Logical control flow 

Each process seems to have exclusive use of the CPU 

Private address space 
Each process seems to have exclusive use of full memory

Why? How?
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Implementing logical control flow
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Abstraction: every process has full control over the CPU

Implementation: time-sharing

time

Process A Process B Process C

Process A Process B Process C

time



Context Switching
Kernel (shared OS code) switches between processes

Control flow passes between processes via context switch.
Context =
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fork
pid_t fork()

1. Clone current parent process to create identical* child process,
including all state (memory, registers, program counter, …).

2. Continue executing both copies with one difference:
• returns 0 to the child process
• returns child’s process ID (pid) to the parent process

fork is unique: called in one process, returns in two processes!  
(once in parent, once in child)
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pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

*almost. See man 3 fork for exceptions.



Creating a new process with fork
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pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

Process n

Child Process m

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

à m pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

à 0

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

hello from parent hello from childWhich prints first?
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fork and private copes
Parent and child continue from private copies of same state.

Memory contents (code, globals, heap, stack, etc.),
Register contents, program counter, file descriptors…

Only difference: return value from fork()
Relative execution order of parent/child after fork() undefined
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void fork1() {
int x = 1;
pid_t pid = fork();
if (pid == 0) {

printf("Child has x = %d\n", ++x);
} else {

printf("Parent has x = %d\n", --x);
}
printf("Bye from process %d with x = %d\n", getpid(), x);

}



fork-exec
fork() clone current process
execv() replace process code and context (registers, memory)

with a fresh program.
See man 3 execv, man 2 execve
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// Example arguments: path="/usr/bin/ls”,
//   argv[0]="/usr/bin/ls”, argv[1]="-ahl", argv[2]=NULL
void fork_exec(char* path, char* argv[]) {

pid_t pid = fork();
if (pid != 0) {

printf("Parent: created a child %d\n”, pid);
} else {

printf("Child: exec-ing new program now\n");
execv(path, argv);

}
printf("This line printed by parent only!\n");

}



Executing a new program
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Code: /usr/bin/ls
Data

fork():

exec():

Running the command ls in a shell:

parent child child

Code/state of shell process.

Copy of code/state 
of shell process.

Replaced by code/state of ls.

Code/state of shell process.
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execv: load/start a program
int execv(char* filename,

char* argv[])

loads/starts program in current process:
Executable filename
With argument list argv

overwrites code, data, and stack
Keeps pid, open files, a few other items 

does not return
unless error

Also sets up environment.  See also: execve.
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Null-terminated
env var strings

unused

Null-terminated
argument strings

envp[n] == NULL
envp[n-1]

envp[0]
…

Linker vars

argv[argc] == NULL
argv[argc-1]

argv[0]
…

envp

argc
argv

Stack bottom

Stack frame for 
main Stack top



exit: end a process
void exit(int status)

End process with status: 0 = normal, nonzero = error.
atexit() registers functions to be executed upon exit
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wait for child processes to terminate

pid_t waitpid(pid_t pid, int* stat, int ops)
Suspend current process (i.e. parent) until child with pid ends.
On success:

Return pid when child terminates.
Reap child.
If stat != NULL, waitpid saves termination reason where it points.

See also: man 3 waitpid
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waitpid example
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void fork_wait() {
int child_status;
pid_t child_pid = fork();

if (child_pid == 0) {
printf("HC: hello from child\n");

} else {
if (-1 == waitpid(child_pid, &child_status, 0) {

perror("waitpid");
exit(1);

}
printf("CT: child %d has terminated\n”,

child_pid);
}
printf("Bye\n");
exit(0);

}

HCBye

CTBye



Zombies!
Terminated process still consumes system resources

Reaping with wait/waitpid

What if parent doesn’t reap?
If any parent terminates without reaping a child, then child will 
be reaped by init process (pid == 1)
What if parent runs a long time?  e.g., shells and servers

OS Process Model 17



Error-checking
Check return results of system calls for errors! (No exceptions.)
Read documentation for return values.
Use perror to report error, then exit.

void perror(char* message)
Print "<message>: <reason that last system call failed.>"

OS Process Model 18



Examining processes on Linux (demo)
ps
pstree
top
/proc
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