

Higher Addresses

Lower Addresses

MEMORY DIAGRAM

REGISTERS DIAGRAM

%RAX %RBP

Return Value (caller-saved) (callee-saved)

%RDI %R10
1st argument (caller-saved) (caller-saved)

%RSI %R11
2nd argument (caller-saved) (caller-saved)

%RDX %R12
3rd argument (caller-saved) (callee-saved)

%RCX %R13
4th argument (caller-saved) (callee-saved)

%R8 %R14
5th argument (caller-saved) (callee-saved)

%R9 %R15
6th argument (caller-saved) (callee-saved)

%RBX
Callee-saved

SPECIAL REGISTERS

%RSP %RIP

Address of stack “top” Address of next instruction
(lowest stack address)

COMMON INSTRUCTIONS

Data movement:
mov a, b – copy a into b
movs a, b – copy sign-extended a into b
movz a, b – copy zero-extended a into b
lea a, b – save address of memory

addressing expression a into b
Stack:
push a – push a on stack
pop a – pop value from top of stack into a
Procedures:
call target - push return address on stack

and jump to target
ret – pop return address from stack

and jump to return address
Arithmetic
add a, b – save sum (a+b) into b
sub a, b – save difference (b-a) into b
imul a, b – save signed product (a*b) into b
and a, b – save bitwise AND (a&b) into b
or a, b – save bitwise OR (a|b) into b
Shift: save b shifted ____ by a into b
shl/sal a, b – to the left (b<<a)
shr a, b – logically to the right (b>>a)
sar a, b – arithmetically to the right (b>>a)
Compare/test: set condition codes/flags…
cmp a, b – based on difference (b-a)
test a, b – based on bitwise AND (a&b)
Conditional jump: jump to target if…
jg target – greater than (zero)
je target – equal to (zero)
jne target – not equal to (zero)
jle target – less than or equal to (zero)
Unconditional jump:
jmp target – jump to target

MEMORY ADDRESS SYNTAX

D(Rb, Ri, S) => Mem[Reg[Rb] + S*Reg[Ri] + D]
S can be 1, 2, 4, or 8 only

