
Assignment for Lab 11
Data Structure Representations

Computer Science 240
	
In	lab	this	week,	you	will	write	some	assembly	language	programs	to	study	how	data	structures	
are	stored	in	memory.		To	investigate	this	concept,	it	is	useful	to	write	some	X86	assembly	code	
directly	(rather	than	producing	it	by	compiling	C	code,	as	we	have	been	doing	up	to	now).			
	
Assembly	Directives	
When	you	create	X86	code	directly,	you	will	include	assembly	directives,	which	begin	with	a	dot	
and	indicate	structural	information	useful	to	the	assembler,	linker,	or	debugger,	but	are	not	in	
and	of	themselves	assembly	instructions.		For	example,	we	use:	
	
 .globl main
	
to	indicate	that	the	label	main	is	a	global	symbol	that	can	be	accessed	by	other	code	modules.		
	
We	state	what	part	of	memory	to	store	code	or	data,	and	also	declare	and	initialize	all		variables	
and	strings,	using	the	following	directives:

 .text .data, .quad, and .string	
	

To		see	a	list	of	possible	directives,	visit:								http://tigcc.ticalc.org/doc/gnuasm.html#SEC67	
	
We	can	also	use	variable	names	directly	in	X86	to	reference	memory	locations.	
	
Below	is	an	example	of	a	simple	C	program,	and	on	the	right	is		an	X86	program	that	performs	
the	equivalent	task.		Read	carefully	to	correlate	the	C	code	to	the	X86:	
	
simple.c:	(C	code)	
	
#include	<stdio.h>	
	
	
long	total	=	0;	
	
	
	
	
	

simple.s:	(X86	code)	
	
	 		.data	//use	the	data	segment	of	memory	for		
																									//global	variables	and	literal	strings	
	
total:	 		.quad			0																																//8	bytes	with	initial	value	0	
	
fstr1:	 		.string		"Sum	=		%d\n"				//formatting	string	for	printf	
	
fstr2:						.string		"Total	=	%d\n"		//formatting	string	for	printf	
	

	

	
	
	
	
	
	
	
int	sum(int	x,int	y)	{	
		int	t	=	x	+	y;	
		
	total	+=t;	
			
return	t;	
}	
	
	
int	main()	{	
				int	x	=	2;	
				int	y	=	3;	
					
				printf("Sum	=	%d\n",sum(x,y));	
				
	
				
	
	
	
					printf("Total	=		%d\n",total);	
					
	
	
	
					return	0;	
}	
	

	
	
	 		.text															//use	the	text	segment	of	memory	for	code	
	
	 		.globl	main	 //the	main	method	must	be		
																																								//declared	as	global	
	
sum:	
	 lea		(%rsi,%rdi,1),%eax			//adds	x	+	y,	stores	result	in	%eax	
	
												add			%eax,total												//variable	name	is	used		
																																																					//	to		reference	address	in	memory	
	 ret		
	
	
	
main:	
											mov				$0x3,%esi	
											mov				$0x2,%edi	
												
											call						sum																		//returns	value	in	%eax	
	
											mov				%eax,%esi					//sets	up	parameters	and	calls	printf	
											mov				$fstr1,%edi			
											mov				$0x0,%eax	
											call					printf	
	
											mov				total,%esi			//sets	up	parameters	and	calls	printf	
										mov				$fstr2,%edi	
											mov				$0x0,%eax	
											call					printf	
	
											mov				$0x0,%eax	
											ret			
	

	
	

1.	Using	the	previous	program	as	a	guide,	write	an	X86	program	which	implements	the	following	C	program	(do	
NOT	use	the	computer	to	compile	the	C	program	and	produce	the	X86	code:		write	it	from	scratch).	
	
#include	<stdio.h>	
int	z;	
int	square(int	n)	{	
		 return	n*n;	
}	
int	main()	{	
					 int	x	=	square(3);	
	 int	y	=	square(4);	
	 z	=	x	+	y;	
	 printf("Calculation	produces	%d\n",z);	
												return	0;	
}	

