Computer Science 240

 Combinational and Arithmetic LogicAssignment for Lab 3

1. Assume you have 3 inputs, $\mathbf{S}, \mathbf{A 1}$ and $\mathbf{A 0}$, and an output \mathbf{Q}.

When $\mathbf{S}=0, \mathbf{Q}=\mathbf{A 0}$
When $\mathbf{S}=1, \mathbf{Q}=\mathbf{A} \mathbf{1}$
Give the truth table for Q :

\mathbf{S}	$\mathbf{A 1}$	$\mathbf{A 0}$	\mathbf{Q}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Write a function for \mathbf{Q}, and simplify to a minimum number of gates:

Draw a circuit that produces \mathbf{Q} :
\mathbf{S} stands for "Select". Knowing this, describe in English what this circuit does:
2. Assume you have 2 inputs, A1 and A0, and 4 outputs/functions, Q0, Q1, Q2, and Q3

Q0 is only true when $\mathbf{A 1 A 0}=00$
Q1 is only true when $\mathbf{A 1 A 0}=01$
Q2 is only true when $\mathbf{A 1 A 0}=10$
Q3 is only true when $\mathbf{A 1 A 0}=11$

Give the truth table:

A1	A0	Q0	Q1	Q2	Q3
0	0				
0	1				
1	0				
1	1				

Write a function for each of $\mathbf{Q 0}, \mathbf{Q 1}, \mathbf{Q 2}$, and $\mathbf{Q 3}$:
Q0 =
Q1 =
Q2 =
Q3 =

Draw a circuit that produces each of the functions from a single set of inputs A1 and A0:
3. Complete the truth table for two functions, Sum and CarryOut, which represent the result when adding two binary digits \mathbf{A} and \mathbf{B} :

A	B	CarryOut	Sum
0	0		
0	1		
1	0		
1	1		

Draw a circuit which produces Sum and CarryOut from inputs A and B (this circuit is know as a half adder). You should use exactly one AND gate and one XOR (exclusive or) gate.

Give the truth table for a full adder (which incorporates a carry-in bit to the sum of \mathbf{A} and \mathbf{B}):

A	B	CarryIn	CarryOut	Sum
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

4. A circuit for the full adder is:

Circle the two half adders:

Explain what each half adder is doing, in relation to adding the three bits \mathbf{A}, \mathbf{B}, and $\mathbf{C i n}$:

Explain what the OR gate is doing to produce the Cout:

