CS 240 Lab 3
 Combinational and Arithmetic Circuits

- Multiplexer/Demutiplexer
- Decoder/Encoder
- Adder

Multiplexer

A multiplexer can be thought of as a selection circuit, which steers a single input from a set of inputs through to the output, based on the select line.

Multiplexer

Select one

- n select lines
- 2^{n} input lines
- 1 output

One of the possible 2^{n} inputs is chosen by the n select lines, and gated through to the output of a multiplexer. The truth table for an 8 x 1 MUX is:

S2	S1	S0	\mathbf{Q}
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Decoder

A decoder takes an n-bit binary number as an input, and asserts the corresponding numbered output from the set of 2^{n} outputs.

- n input/select lines
-2^{n} outputs
- only one of the outputs is active at any given time, based on the value of the n select lines.

2x4 Decoder

Built with code detectors:

Truth table for an 3x8 decoder

Demultiplexer

Opposite of multiplexer

Single input data line
Input through to a single one of the 2^{n} output lines
Output line is determined by the n select inputs

| S1 S0 I | Y3 Y2 Y1 Y0 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | | |
| 0 | 0 | 1 | | |
| 0 | 1 | 0 | | |
| 0 | 1 | 1 | | |
| 1 | 0 | 0 | | |
| 1 | 0 | 1 | | |
| 1 | 1 | 0 | | |
| 1 | 1 | 1 | | |

Encoder

Opposite of decoder
2^{n} inputs - only 1 of the inputs can be active at a time
Input selected specifies a decimal number which corresponds to the number of the input ($3,2,1$, or 0)
n outputs represent the corresponding binary representation of the decimal value specified by the input

| $\mathbf{Y 3} \mathbf{Y 2} \mathbf{Y 1} \mathbf{Y 0}$ | | | | A1 A0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | |
| 0 | 0 | 1 | 0 | |
| 0 | 1 | 0 | 0 | |
| 1 | 0 | 0 | 0 | |

Half-Adder - adds two one-bit values

Full Adder - uses two half-adders and incorporates a carry-in

Cout

Cin A	B						Cout	Sum	
0	0	0	0	0	Sum $=\mathrm{A} \oplus \mathrm{B} \oplus \mathrm{Cin}$				
0	0	1	0	1					
0	1	0	0	1					
0	1	1	1	0					
1	0	0	0	1	Cout $=\mathrm{AB}+(\mathrm{A} \oplus \mathrm{B}) \mathrm{Cin}$				
1	0	1	1	0					
1	1	0	1	0					
1	1	1	1	1					

4-bit Ripple-Carry Adder

