CS 240 Lab 3 Combinational and Arithmetic Circuits

- Multiplexer/Demutiplexer
- Decoder/Encoder
- Adder

Multiplexer

A multiplexer can be thought of as a **selection circuit**, which steers a single input from a set of inputs through to the output, based on the select line.

One of the possible 2^n inputs is chosen by the n select lines, and gated through to the output of a multiplexer. The truth table for an 8x1 MUX is:

<u>S2</u>	S1	S0	Q
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Decoder

A decoder takes an n-bit binary number as an input, and asserts the corresponding numbered output from the set of 2^n outputs.

- n input/select lines
- 2ⁿ outputs

- only one of the outputs is active at any given time, based on the value of the n select lines.

2x4 Decoder

Built with code detectors:

Truth table for an 3x8 decoder

<u>S2</u>	S1	S0		Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	Ι	1	0	0	0	0	0	0	0
0	0	1	Ι	0	1	0	0	0	0	0	0
0	1	0	Ι	0	0	1	0	0	0	0	0
0	1	1	Ι	0	0	0	1	0	0	0	0
1	0	0	Ι	0	0	0	0	1	0	0	0
1	0	1	Ι	0	0	0	0	0	1	0	0
1	1	0	Ι	0	0	0	0	0	0	1	0
1	1	1	Ι	0	0	0	0	0	0	0	1

Demultiplexer

Opposite of multiplexer

Single input data line

Input through to a single one of the 2ⁿ output lines Output line is determined by the n select inputs

<u>S1 S0 I</u> Y3 Y2 Y1 Y0 0 0 0

- 0 0 1
- 0 1 0
- 0 1 1
- 1 0 0
- 1 0 1
- 1 1 0
- 1 1 1

Encoder

Opposite of decoder

2ⁿ inputs - only 1 of the inputs can be active at a time

Input selected specifies a decimal number which corresponds to the number of the input (3, 2, 1, or 0)

n outputs represent the corresponding binary representation of the decimal value specified by the input

Half-Adder - adds two one-bit values

		A	В	Cout	Sum
A		0	0	0	0
в		0	1	0	1
		1	0	0	1
	\Box	1	1	1	0
	Cout				

Full Adder — uses two half-adders and incorporates a
carry-in

<u>Cin</u>	A	В	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $Sum = A \oplus B \oplus Cin$

Cout = $AB+(A \oplus B)Cin$

4-bit Ripple-Carry Adder

