
CS240 Laboratory 8
Disassembly and Reverse Engineering

Memory Layout

Kernel
above 0x7fffffff

Stack
below Ox7fffffff
grows down

Heap
 above Data segment

Data segment
statics and literals

Text segment
starts at 0x400000

addresses below
0x400000 reserved
for operating system

Instructions
The size of the data being referenced is often specified with an additional
character:

 b (byte)
w (2 bytes)
l (4 bytes), or
q (8 bytes).

Operand Types

Immediate $0x400, $-533

Register: %rax,%rbx,%rcx,%rdx,%rsi,%rdi,%rbp,%rsp,

 %r8,%r9,%r10,%r11,%r12,%r13,%r14,%r15

some have special purpose: %rsp is stack pointer, %rax always used to
return value from functions

Memory -0x18(%rsp)

Types of Instruction

Moving Data
 movl Src,Dest // copy 4 bytes from source to destination

Arithmetic/Logical operations – 2 operands

add Src,Dest
sub Src,Dest
imul Src,Dest

shr Src,Dest
sar Src, Dest
shl Src,Dest
sal Src, Dest
shr Src,Dest

xor Src,Dest
and Src,Dest
or Src,Dest

mul Src,Dest
imul Src,Dest
div Src,Dest
idiv Src,Dest

Arithmetic/Logical operations – 1 operand

inc Dest
del Dest
neg Dest
not Dest

 Setting Condition Codes Explicitly – used for control flow

cmp Src2,Src1 sets flags based on value of Src2 – Src1,
 discards result

 test Src2,Src1 sets flags based on a & b, discards result

Control Flow

 Conditional jump instructions in X86 implement the following high-level
constructs:
• if (condition) then {...} else {…}
• while (condition) {…}
• do {…} while (condition)
• for (initialization; condition; iterative) {...}

 Unconditional jumps are used for high-level constructs such as:

• break
• continue

• X86 instructions can be in different order from C code
• Some C expressions require multiple X86 instructions
• Some X86 instructions can cover multiple C expressions
• Compiler optimization can do some surprising things!
• Local or temporary variables can be stored in registers or on the stack

Function Calling Conventions
• Arguments for functions are stored in registers, in the following

order: arg1 – arg6: %rdi, %rsi,%rdx,%rcx,%r8,%r9
• If there are more than 6 parameters for a function, the rest of the

arguments are stored on the stack before the function is called
• Return value from function is always in %rax

The compiler will use only part of a register if the value stored there will fit in
less than 64 bits (8 bytes). This is an optimization that makes instructions a bit
shorter.

So, in the code, you may see register names of the following form, all of which
refer to %rax:

%rax = 8 byte value
%eax = 4 byte value
%ax = 2 byte value
%al = 1 byte value

Tools
Tools can be used to examine bytes of object code (executable program) and
reconstruct (reverse engineer) the assembly source.

gdb – disassembles an executable file into the associated assembly language
representation, and provides tools for memory and register examination, single
step execution, breakpoints, etc.

objdump
 can also be used to disassemble and display information

 $ objdump –t p

Prints out the program’s symbol table. The symbol table includes the
names of all functions and global variables, the names of all the functions
the called, and their addresses.

 $ objdump -d p

Object Code
0x401040 <sum>:
0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
0xec
0x5d
0xc3

Disassembled version
00401040 <_sum>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 8b 45 0c mov 0xc(%ebp),%eax
 6: 03 45 08 add 0x8(%ebp),%eax
 9: 89 ec mov %ebp,%esp
 b: 5d pop %ebp
 c: c3 ret

strings
$ strings –t x p
Displays the printable strings in your program.

