
Laboratory 9 Notes
X86 Stack

• Certain instructions implicitly modify the stack pointer (push, pop, call, ret)

• %rsp (stack pointer) always holds a pointer into the current stack frame

 push src 1. Make space on the stack by decrementing %rsp:

%rsp ß %rsp – 8

 2. Move src to the stack:
 (%rsp) ß src

Initial state of the stack

%rsp=0x7ffffff8

Push a word-size value in %rax on the stack
(decrement %rsp and move Src to (%rsp)

 (assume %rax = 0x0000000002030405)

 push %rax

%rsp=0x 7ffffff0

 0x02030405

 pop dest 1. Move contents of top of stack to the dest
 dest ß (%rsp)

 2. Release space on the stack by incrementing %rsp.

 %rsp ß %rsp + 8

Initial State of Stack

 %rsp=0x7ffffff0

Pop a word-size value from the stack.

Pop %rbx

 (%rbx gets 0x0000000002030405)

%rsp=0x7ffffff8

 0x02030405 0x02030405

 call function 1. Pushes the return address on stack (return address is
 the address of the instruction following the function call)

 %rsp ß %rsp - 8
 (%rsp) ß %rip (already updated for next instruction)

 2. Puts the starting address of the function in %rip:

 %rip ß starting address of function

 ret 1. Pops the return address from the top of the stack into
 %rip (to resume execution of the calling function).
 %rip ß (%rsp)
 %rsp ß %rsp + 8

Conventions for drawing stack diagrams

To record the contents of the stack to understand how the stack is used, using
the following notation:

- We use the model of memory where the stack has low addresses at the
bottom and high at the top. Each row in the stack represents an 8-byte
value. The initial %rsp with a subscript of 0 is pointing to the top of the
current stack frame

stack frame of
calling function

 %rsp0 ----à ret addr to calling program
stack frame of
current function

- Trace the effect on the stack of executing each instruction in the program

by moving the position of the %rsp when it changes, (incrementing the
subscript for each new value), and by recording new values on the stack
as they are stored there.

- When the stack starts to empty, continue with the same notation, except

use the right hand side of the stack diagram to indicate the changes.

- Also record changes to relevant registers.

